English  |  正體中文  |  简体中文  |  Items with full text/Total items : 62805/95882 (66%)
Visitors : 3880744      Online Users : 258
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/115929


    Title: Simulating surface reaction dynamics
    Authors: Lin, Jyh-Shing;Lu, Shao-Yu
    Keywords: CATALYST;CONDUCTIVE SURFACE;DYNAMIC VIBRATIONAL MODES OF MOLECULES;INELASTIC ELECTRON TUNNELLING SPECTROSCOPY (IETS);MOLECULAR ADSORPTION;MOLECULAR SPECIES;NANOCLUSTERS;PALLADIUM AND SILVER SUBSTRATES;QUANTUM SURFACE REACTIONS;RAMAN SPECTROSCOPY;SCANNING TUNNELLING MICROSCOPY (STM);SHORT TIME FOURIER TRANSFORMATION CALCULATIONS;SOLAR CELLS;SURFACE ADDITIVES;SURFACE-DOSED;VIBRATIONAL SPECTROSCOPY;WEAKER FORCE VAN DER WAAL INTERACTIONS
    Date: 2018-12
    Issue Date: 2019-03-09 12:11:25 (UTC+8)
    Publisher: SCIENCE IMPACT LTD
    Abstract: Many of today's technologies for solar cells, catalysts and highly efficient lighting, come from the use of a conductive surface such as a metal or semiconductor, surface-dosed with other molecular species. These surface additives adhere to the substrate via adsorption, rather than being absorbed into the structure of the main material. Given the adsorbates are added at nanoscale dosages, the reactions take place at a quantum level and cannot be predicted by using conventional chemistry. Therefore, without consideration of the complex electronic, chemical and vibrational properties of the surface interactions between different molecular species, it has been hard to predict the outcomes of adding different adsorbates to substrates. Lin says: 'Simulations of the quantum surface reactions between chemicals are vital, since they enable us to undertake high-throughput screening of different combinations of materials.'

    According to Lin: 'Vibrational spectroscopy is one of the most important tools for the determination of the surface species generated upon molecular adsorption.' Techniques used include Raman spectroscopy and scanning tunnelling microscopy (STM). The latter device employs a fine probe, tipped with silver or other appropriate element through which a voltage is generated. Within a vacuum, the tip is moved within nanometres of the surface of the materials being studied, such that an electron from the tip is induced to tunnel across the space between tip and material. By scanning the probe across the material at a constant height, an atomic-scale image is produced of the surface materials. However, Lin says: 'The images produced by standard STM are not easy to interpret.' A better technique for probing the dynamic vibrational modes of molecules is to use STM with spectra produced by inelastic electron tunnelling spectroscopy (IETS).

    Work over the next five years will concentrate on narrowing that gap through accounting for weaker force van der Waal interactions and by refining the short time Fourier transformation calculations. Currently, Lin is focusing on palladium and silver substrates and nanoclusters, and evaluating their ability to break apart the atomic bonds within alcohol molecules, with a view to using this technique to produce hydrogen fuel for transport and other industrial end uses. Both team leaders look forward to their data and simulations being used by researchers all over the world to develop highly efficient solar cells, new OLEDs and effective catalysts for industrial processes. All these technologies will contribute greatly to powering our future in a carbon-neutral fashion.
    Relation: IMPACT Volume 2018 11, p.69-71(3)
    DOI: 10.21820/23987073.2018.11.69
    Appears in Collections:[化學學系暨研究所] 期刊論文

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML143View/Open
    Simulating surface reaction dynamics.pdf513KbAdobe PDF1View/Open

    All items in 機構典藏 are protected by copyright, with all rights reserved.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - Feedback