English  |  正體中文  |  简体中文  |  Items with full text/Total items : 55177/89446 (62%)
Visitors : 10659950      Online Users : 26
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/115913

    Title: A simple transformation for Mahonian statistics on labelings of rake posets
    Authors: Sen-Peng Eu, Tung-Shan Fu, Hsiang-Chun Hsu
    Keywords: Mahonian statistics;Rake poset;Subexcedent word;Bijection
    Date: 2018-03
    Issue Date: 2019-03-09 12:10:33 (UTC+8)
    Publisher: Springer Japan
    Abstract: We present a simple transformation for the inversion number and major index statistics on the labelings of a rooted tree with n vertices in the form of a rake with k teeth. The special case k=0 provides a simple transformation for the Mahonian statistics on the set Sn of permutations of {1,2,…,n} . We also extend the transformation to a bijective interpretation of the fact that the major index of the equivalence classes of the labelings is equidistributed with the major index of the permutations in Sn satisfying the condition that the elements 1,2,…,k appear in increasing order.
    Relation: Graphs and Combinatorics 34(2), p.373-381
    DOI: 10.1007/s00373-018-1882-z
    Appears in Collections:[Graduate Institute & Department of Mathematics] Journal Article

    Files in This Item:

    File Description SizeFormat
    A Simple Transformation for Mahonian Statistics on Labelings of Rake Posets.pdf401KbAdobe PDF0View/Open

    All items in 機構典藏 are protected by copyright, with all rights reserved.

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - Feedback