淡江大學機構典藏:Item 987654321/115703
English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 64191/96979 (66%)
造訪人次 : 8463569      線上人數 : 8645
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/115703


    題名: Evaluating Machine Learning Varieties for NBA Players Winning Contribution
    其他題名: English
    作者: Hsu, P.;Galsanbadam, S.;Yang, Jr-Syu;Yang, C.
    關鍵詞: Maching Learning
    日期: 2018-06-28
    上傳時間: 2018-12-25 12:10:30 (UTC+8)
    摘要: The reputation of NBA breach its boundary worldwide and have numerous fans around all the world. As the league concerns a lot of money and fans, several of researches have been challenged trying to predict its results and winning teams. Through its history a lot of data and statistics are collected for NBA and it’s still becoming more rich and detailed. Even though, such enormous data available, it is still complicated to analyze and predict the outcome of match. In order to achieve exceptional prediction rating we will be focusing on how individual player’s achievement influences the team win rating. For our learning techniques, we choose SVR, polynomial regression and random forest regression as they are able to give consistent result regardless of complex data features.
    關聯: ICSSE 2018
    顯示於類別:[機械與機電工程學系暨研究所] 會議論文

    文件中的檔案:

    沒有與此文件相關的檔案.

    在機構典藏中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回饋