淡江大學機構典藏:Item 987654321/115703
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 64191/96979 (66%)
造访人次 : 8381154      在线人数 : 7250
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/115703


    题名: Evaluating Machine Learning Varieties for NBA Players Winning Contribution
    其它题名: English
    作者: Hsu, P.;Galsanbadam, S.;Yang, Jr-Syu;Yang, C.
    关键词: Maching Learning
    日期: 2018-06-28
    上传时间: 2018-12-25 12:10:30 (UTC+8)
    摘要: The reputation of NBA breach its boundary worldwide and have numerous fans around all the world. As the league concerns a lot of money and fans, several of researches have been challenged trying to predict its results and winning teams. Through its history a lot of data and statistics are collected for NBA and it’s still becoming more rich and detailed. Even though, such enormous data available, it is still complicated to analyze and predict the outcome of match. In order to achieve exceptional prediction rating we will be focusing on how individual player’s achievement influences the team win rating. For our learning techniques, we choose SVR, polynomial regression and random forest regression as they are able to give consistent result regardless of complex data features.
    關聯: ICSSE 2018
    显示于类别:[機械與機電工程學系暨研究所] 會議論文

    文件中的档案:

    没有与此文件相关的档案.

    在機構典藏中所有的数据项都受到原著作权保护.

    TAIR相关文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回馈