English  |  正體中文  |  简体中文  |  Items with full text/Total items : 50122/85141 (59%)
Visitors : 7890155      Online Users : 50
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/11570


    Title: 應用資訊檢索技術於論文評閱者推薦模式之評估
    Other Titles: Evaluation of Information Retrieval Based Models for Recommendation of Paper Reviewers
    Authors: 魏世杰;羅欣瑜
    Contributors: 淡江大學資訊管理學系
    Keywords: 向量空間模式;論文表示方式;評閱者推薦模式;Vector space model;Paper representation;Reviewer recommendation
    Date: 2008-06-01
    Issue Date: 2009-03-17
    Publisher: 臺北縣 : 淡江大學資訊與圖書館學系
    Abstract: 隨著傳統期刊逐漸採用電子形式出刊,也帶動投稿及評閱過程愈來愈多採用電子自動化之潮流。目前一般的線上投稿暨評閱系統雖然功能逐漸齊備,但仍少有推薦評閱者功能。為評估現有可推薦評閱者技術之表現,本文分別用標題、關鍵詞、摘要、全文4種不同長度的論文表示方式,搭配7種評閱者匹配法,其中包括向量空間模式下的4種相似度匹配法,及應用於OpenConf線上投稿系統中的3種主題式匹配法,交叉組合出4×7=28種推薦模式。測試結果顯示,向量空間模式匹配法優於主題式匹配法。又所有推薦模式中,以摘要為論文表示方式,搭配向量空間模式的餘弦相似度匹配法,其推薦效果最好。 As more e-journals appear and the e-review process becomes more popular, the demand for automatic recommendation of a good peer reviewer has been ever increasing. To automate the process of paper reviewer recommendation, this work evaluates four kinds of paper representations, which include full text, abstract, title, and author defined keywords. To match reviewers with papers, this work evaluates seven scoring methods including three topic-based methods from OpenConf, a popular online submission system with source, and four similarity-based methods from the vector space model of traditional information retrieval. The results of the 28 experiments show that recommendation methods based on the vector space model are better than the three topic-based methods of OpenConf in most document representations. Among them, the abstract paper representation combined with cosine similarity matching measure has the highest average precision.
    Relation: 教育資料與圖書館學 45(4),頁 409-431
    Appears in Collections:[資訊管理學系暨研究所] 期刊論文

    Files in This Item:

    File Description SizeFormat
    115368P001.pdf1476KbAdobe PDF968View/Open

    All items in 機構典藏 are protected by copyright, with all rights reserved.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - Feedback