English
| 正體中文 |
简体中文
|
全文筆數/總筆數 : 64176/96941 (66%)
造訪人次 : 9190947 線上人數 : 14043
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by
NTU Library & TKU Library IR team.
搜尋範圍
全部機構典藏
工學院
電機工程學系暨研究所
--專書
查詢小技巧:
您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
進階搜尋
主頁
‧
登入
‧
上傳
‧
說明
‧
關於機構典藏
‧
管理
淡江大學機構典藏
>
工學院
>
電機工程學系暨研究所
>
專書
>
Item 987654321/115689
資料載入中.....
書目資料匯出
Endnote RIS 格式資料匯出
Bibtex 格式資料匯出
引文資訊
請使用永久網址來引用或連結此文件:
https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/115689
題名:
模糊鑑別器於Burn In系統之設計
其他題名:
Fuzzy Identification for Burn-In System
作者:
陳光原
關鍵詞:
模糊系統
;
群聚分析演算法:奔應系統
日期:
2012-06
上傳時間:
2018-12-18 12:11:09 (UTC+8)
摘要:
建立一個模糊系統主要是依靠專家經驗來提供設計方法。如果一個受控系統只知道它的輸入輸出資料時,如何在沒有專家經驗下來建立適當的模糊鑑別器是很大的挑戰。本論文會探討設計一個模糊鑑別器的方法,藉著學習法則來不斷地學習輸入輸出的資料的行為,使其儘可能趨近於欲鑑別的系統。
在論文的第一部份,我們發展了一種適用於模糊空間切割的分群演算法,它可以有效的探勘所處理資料之群聚分佈狀態,分析欲鑑別系統輸入輸出資料的群聚關係,而所得到之結果則可用作模糊系統粗略式的結構鑑別。得到初步的模糊系統之後,便可以系統之輸入輸出資料做為訓練目標,進一步學習以細調模糊系統的參數,使之能夠更精確符合受鑑系統的行為。
在論文的第二部份,我們介紹一種基於競爭式學習的模糊系統建模方法。我們利用SOFM 神經網路在低維度矩陣空間內輸出拓樸網路來得到高維度輸入資料的推理法則,並產生有意義的規則資料庫以重塑受鑑別系統。而為了更精確逼近受鑑系統的特性,本論文將萃取出的模糊規則進一步結合遞迴式最小平方法進行參數鑑別的設計程序,來達到微調的效果。
論文的最後一個部份則是將模糊鑑別器的設計方法應用在一Burn-In測試系統的恆溫調節。在此Burn-In測試系統中,我們需要控制加熱器與散熱風扇讓測試溫度穩定在所設定範圍,才能達到對每一個待測物Burn-In的效果;傳統作法中使用PI控制器所實現的溫度控制系統需要耗費很多時間來調整控制參數,在上升時間與超越量等性能也不易滿足測試的需求。本論文使用模糊鑑別器的設計方法建立模糊控制器以操控風扇及加熱器之運作,實際結果發現除了減少參數調整的試誤時間外,對系統也有較快上升時間及較小的超越量。
顯示於類別:
[電機工程學系暨研究所] 專書
文件中的檔案:
檔案
描述
大小
格式
瀏覽次數
index.html
0Kb
HTML
166
檢視/開啟
模糊鑑別器於Burn In系統之設計 摘要.pdf
170Kb
Adobe PDF
119
檢視/開啟
模糊鑑別器於Burn In系統之設計 目次.pdf
134Kb
Adobe PDF
99
檢視/開啟
在機構典藏中所有的資料項目都受到原著作權保護.
TAIR相關文章
DSpace Software
Copyright © 2002-2004
MIT
&
Hewlett-Packard
/
Enhanced by
NTU Library & TKU Library IR teams.
Copyright ©
-
回饋