English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 60696/93562 (65%)
造訪人次 : 1046303      線上人數 : 21
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/115580

    題名: DFT plus U study on the electronic structures and optical properties of pyrite and marcasite
    作者: Yuqiong Li, Jianhua Chen*, Ye Chen, Cuihua Zhao, Ming-Hsien Lee, Tse-Hsing Lin
    關鍵詞: Pyrite;Marcasite;Electronic structures;Optical properties;Density functional method
    日期: 2018-07
    上傳時間: 2018-11-15 12:10:41 (UTC+8)
    摘要: Pyrite is an attractive material as its good photovoltaic performance; however, the presence of marcasite phase is considered to be detrimental to pyrite as a photovoltaic material due to its low band gap. Density functional theory (DFT) combined with Hubbard U correction was used to perform the calculations on the crystal structures, electronic structures, and optical properties of pyrite and marcasite in the present work. When a U value of 1.5 eV is adopted to Fe 3d, the band gaps of pyrite and marcasite are calculated to be 1.05 eV and 1.33 eV, respectively, compared to 0.54 eV and 1.05 eV without adopting U. It is found that the fundamental band gap in pyrite is formed by Fe 3d-S 3p transition while in marcasite it is formed by Fe 3d-Fe 3d transition. The larger band gap of marcasite suggests that the presence of marcasite could not deteriorate the photovoltaic performance of pyrite. The subsequent calculations on the optical properties confirmed a very similar optical absorption performance of marcasite to pyrite, even finding a redshift of the optical absorption edge of marcasite compared to pyrite in the low energy region and a wider absorption range in the high energy region. These results were associated with the Fe octahedron differences in the crystals, which resulted in a different d orbital splitting scheme proposed in our study.
    關聯: Computational Materials Science 150, p.346-352
    DOI: 10.1016/j.commatsci.2018.04.009
    顯示於類別:[物理學系暨研究所] 期刊論文


    檔案 描述 大小格式瀏覽次數



    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回饋