English  |  正體中文  |  简体中文  |  Items with full text/Total items : 62805/95882 (66%)
Visitors : 3947973      Online Users : 743
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/115563


    Title: Three-dimensional numerical simulation on the interaction of solitary waves and porous breakwaters
    Authors: Wu, Yun-Ta;Yeh, Chia-Lin;Hsiao, Shih-Chun
    Date: 2014-03
    Issue Date: 2018-11-08 12:12:13 (UTC+8)
    Publisher: Elsevier
    Abstract: A three-dimensional (3D) large-eddy-simulation model with macroscopic model equations of porous flow is proposed to investigate solitary waves interacting with permeable breakwaters. The major objective of this paper is twofold. First, we seek to evaluate the present model through the comparison with available simulated and measured data in the literature. The second aim, given the 3D nature of flow past a permeable breakwater, the variations of permeable breakwater modeled on both macroscopic and microscopic scales are examined. First validation is carried out with experiments on solitary wave propagation in a 3D wave basin and then runup on a vertical permeable breakwater with a gap in the lateral direction. A satisfactory agreement on the free surface elevation time series is obtained between model and measured results. Second, we replicate the experiments on a solitary wave interaction with a submerged permeable breakwater in a two-dimensional narrow wave flume. The porous medium is composed of spheres with a uniform size and arranged in a non-staggered regular pattern such that the porous medium can thus be modeled on macroscopic and microscopic scales. The numerical calculations indicate that the results obtained with macroscopic and microscopic modeling both fit the measurements fairly well in terms of the free surface elevations and velocity fields. Specifically, the microscopic modeling better simulates detailed phenomena such as flow injection from the porous medium and the initial stage of the formation of the main vortex in the leeward face of the obstacle. After the solitary wave completely propagates over the permeable object, the discrepancies between macroscopic and microscopic model results are insignificant. More accurate 3D results are used to determine the trajectories of fluid particles around the porous object to help understand the possible sediment movements in suspensions.
    Relation: Coastal Engineering, 85, p.12-29
    DOI: 10.1016/j.coastaleng.2013.12.003
    Appears in Collections:[水資源及環境工程學系暨研究所] 期刊論文

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML58View/Open

    All items in 機構典藏 are protected by copyright, with all rights reserved.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - Feedback