English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 62822/95882 (66%)
造訪人次 : 4028347      線上人數 : 565
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/115536


    題名: Wireless image fuzzy recognition system for human activity
    作者: Chen, H.C.;Wong, C.C.;Feng, H.M.
    關鍵詞: Human Activity;Fuzzy image model;Wireless Network;Image Recognition
    日期: 2017-01-16
    上傳時間: 2018-11-08 12:11:03 (UTC+8)
    出版者: Springer US
    摘要: This study developed a fuzzy image model system for transmitting data over a wireless network channel to efficiently realize human activity in virtual images presentation. Because of the excellent mobile characteristics of wireless sensing networks, small devices are very desirable for local-area deployment. Complex model identification problems, such as acquiring and handling wireless image patterns, require analyzing a large amount of data, which occupies a long time at an acceptable transmission quality. In the proposed system, a cross-layer access method is employed to improve the visual clarity. Image packets are assigned to tune the category queue priority, with the probability allocated through a Markov chain model. This is a favorable approach to balancing the wireless image transmission traffic load. The similarity mixing algorithm, which is based on the maximal similarity and minimal disparity concepts, is used to aggregate the primary image features. The collected image patterns with converted coding vectors are efficiently trained through a human feature recognition procedure to generate a human model. A human action is received in real time from wireless sensing networks, and the image feature is retrieved by approximating a higher compatibility in practice simulations. The fuzzy image model uses the simple region-based evaluation and flexible extraction concepts to describe appropriate image partitions. This technology provides the highest possibility of human feature maps to identify the current action and offers a simple method for detecting human activity in indoor environments. Several human sensing and feature mapping experiments were conducted to verify the feasibility of applying the image recognition technology in nonlinear, time variant, and uncertain human activity problems. This study integrates numerous advantages from the mobility of wireless sensing; the proposed system efficiently controls congested image packages and easily confirms their related human activity. Experimental results verify that 60 testing frames approach about 96.6% accuracy within 3 s. These evaluations illustrate that it is applicable usage in some indoor environments.
    關聯: Multimedia Tools and Applications 76(23), p.25231-25251
    DOI: 10.1007/s11042-016-4302-5
    顯示於類別:[電機工程學系暨研究所] 期刊論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML95檢視/開啟

    在機構典藏中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回饋