English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 64178/96951 (66%)
造訪人次 : 9385471      線上人數 : 242
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/115409


    題名: Parity and strong parity edge-colorings of graphs
    作者: Hsiang-Chun Hsu;Gerard Jennhwa Chang
    關鍵詞: (Strong) parity edge-coloring;(Strong) parity edge-chromatic number;Hypercube embedding;Hopt-Stiefel function;Product of graphs
    日期: 2012-11-30
    上傳時間: 2018-10-25 12:11:04 (UTC+8)
    出版者: Springer US
    摘要: A parity walk in an edge-coloring of a graph is a walk along which each color is used an even number of times. A parity edge-coloring (respectively, strong parity edge-coloring) is an edge-coloring in which there is no nontrivial parity path (respectively, open parity walk). The parity edge-chromatic number p(G) (respectively, strong parity edge-chromatic number pˆ(G) ) is the least number of colors in a parity edge-coloring (respectively, strong parity edge-coloring) of G. Notice that pˆ(G)≥p(G)≥χ′(G)≥Δ(G) for any graph G. In this paper, we determine pˆ(G) and p(G) for some complete bipartite graphs and some products of graphs. For instance, we determine pˆ(Km,n) and p(K m,n ) for m≤n with n≡0,−1,−2 (mod 2⌈lg m⌉).
    關聯: Journal of Combinatorial Optimization 24(4), p.427-436
    DOI: 10.1007/s10878-011-9398-y
    顯示於類別:[應用數學與數據科學學系] 期刊論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML138檢視/開啟

    在機構典藏中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回饋