淡江大學機構典藏:Item 987654321/115406
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 64178/96951 (66%)
Visitors : 10772336      Online Users : 20682
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/115406


    Title: Max-coloring of vertex-weighted graphs
    Authors: Hsiang-Chun Hsu;Gerard Jennhwa Chang
    Keywords: Coloring;Weighted graph;Perfection
    Date: 2016
    Issue Date: 2018-10-25 12:10:59 (UTC+8)
    Publisher: Springer Japan
    Abstract: A proper vertex coloring of a graph G is a partition \{A_1,A_2,\ldots ,A_k\} of the vertex set V(G) into stable sets. For a graph G with a positive vertex-weight c:V(G) \rightarrow (0,\infty ), denoted by (G,c), let \chi (G,c) be the minimum value of \sum _{i=1}^k \max _{v \in A_i} c(v) over all proper vertex coloring \{A_1,A_2,\ldots ,A_k\} of G and \sharp \chi (G,c) the minimum value of k for a proper vertex coloring \{A_1,A_2,\ldots ,A_k\} of G such that \sum _{i=1}^k \max _{v \in A_i} c(v) = \chi (G,c). This paper establishes an upper bound on \sharp \chi (G,c) for a weighted r-colorable graph (G,c), and a Nordhaus–Gaddum type inequality for \chi (G,c). It also studies the c-perfection for a weighted graph (G,c).
    Relation: Graphs and Combinatorics 32(1), p.191-198
    DOI: 10.1007/s00373-015-1562-1
    Appears in Collections:[Department of Applied Mathematics and Data Science] Journal Article

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML155View/Open
    Max-coloring of vertex-weighted graphs.pdf396KbAdobe PDF1View/Open

    All items in 機構典藏 are protected by copyright, with all rights reserved.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - Feedback