English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 64178/96951 (66%)
造訪人次 : 10093130      線上人數 : 20152
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/115406


    題名: Max-coloring of vertex-weighted graphs
    作者: Hsiang-Chun Hsu;Gerard Jennhwa Chang
    關鍵詞: Coloring;Weighted graph;Perfection
    日期: 2016
    上傳時間: 2018-10-25 12:10:59 (UTC+8)
    出版者: Springer Japan
    摘要: A proper vertex coloring of a graph G is a partition \{A_1,A_2,\ldots ,A_k\} of the vertex set V(G) into stable sets. For a graph G with a positive vertex-weight c:V(G) \rightarrow (0,\infty ), denoted by (G,c), let \chi (G,c) be the minimum value of \sum _{i=1}^k \max _{v \in A_i} c(v) over all proper vertex coloring \{A_1,A_2,\ldots ,A_k\} of G and \sharp \chi (G,c) the minimum value of k for a proper vertex coloring \{A_1,A_2,\ldots ,A_k\} of G such that \sum _{i=1}^k \max _{v \in A_i} c(v) = \chi (G,c). This paper establishes an upper bound on \sharp \chi (G,c) for a weighted r-colorable graph (G,c), and a Nordhaus–Gaddum type inequality for \chi (G,c). It also studies the c-perfection for a weighted graph (G,c).
    關聯: Graphs and Combinatorics 32(1), p.191-198
    DOI: 10.1007/s00373-015-1562-1
    顯示於類別:[應用數學與數據科學學系] 期刊論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML154檢視/開啟
    Max-coloring of vertex-weighted graphs.pdf396KbAdobe PDF1檢視/開啟

    在機構典藏中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回饋