English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 58273/91818 (63%)
造访人次 : 13798567      在线人数 : 43
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻

    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/115342

    题名: Weight-Adjustable Ranking for Keyword Search in Relational Databases
    作者: Chichang Jou, Sian Lun Lau
    关键词: Keyword Search, Information Retrieval, Ranking, Mean Average Precision, Rank Reciprocal Difference
    日期: 2018-08-08
    上传时间: 2018-10-23 12:11:49 (UTC+8)
    摘要: Huge volumes of invaluable information are hidden behind web relational
    databases. They could not be extracted by search engines. The problem is
    especially severe for long text data, for example: book reviews, company descriptions,
    and product specifications. Many researches have investigated to integrate
    information retrieval and database indexing technologies to provide keyword
    search functionality for these useful contents. Due to diversifying data relationships
    in application domains and miscellaneous personal preferences, current
    ranking results of related researches do not satisfy user requirements. We design
    and implement a Weight-Adjustable Ranking for Keyword Search (WARKS)
    system to address the issue. Mean average precision (MAP) and mean rank reciprocal
    difference (MRRD) are proposed as measurements of ranking effectiveness.
    We use an integrated international trade show database as our experimental
    domain. User study demonstrates that WARKS performs better than previous
    關聯: NA
    显示于类别:[資訊管理學系暨研究所] 會議論文


    档案 大小格式浏览次数



    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回馈