淡江大學機構典藏:Item 987654321/115253
English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 62822/95882 (66%)
造訪人次 : 4028367      線上人數 : 566
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/115253


    題名: Artificial Intelligence for Automatic Text Summarization
    作者: Day, Min-Yuh;Chen, Chao-Yu
    關鍵詞: Artificial Intelligence;Sequence-to-Sequence;Automatic Text Summarization, Long Short-Term Memory;Recurrent Neural Network
    日期: 2018-07-07
    上傳時間: 2018-10-18 12:12:20 (UTC+8)
    出版者: IEEE
    摘要: Automatic text summarization has played a critical role in helping people obtain key information from increasing huge data with the advantaged development of technology. In the past, few literatures are related to solve the problem of generating titles (short summaries) by using artificial intelligence (AI). The purpose of this study is that we proposed an AI approach for automatic text summarization. We developed an AI text summarization system architecture with three models, namely, statistical model, machine learning model, and deep learning model as well as evaluating the performance of three models. Essay titles and essay abstracts are used to train artificial intelligence deep learning model to generate the candidate titles and evaluated by ROUGE for performance evaluation. The contribution of this paper is that we proposed an AI automatic text summarization system by applying deep learning to generate short summaries from the titles and abstracts of the Web of Science (WOS) database.
    關聯: Proceedings of the 2018 IEEE 18th International Conference on Information Reuse and Integration (IEEE IRI 2018)
    DOI: 10.1109/IRI.2018.00076
    顯示於類別:[資訊管理學系暨研究所] 會議論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML354檢視/開啟
    index.html0KbHTML302檢視/開啟
    index.html0KbHTML409檢視/開啟

    在機構典藏中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回饋