淡江大學機構典藏:Item 987654321/115252
English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 56562/90363 (63%)
造訪人次 : 11861579      線上人數 : 102
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/115252


    題名: Detecting Spamming Reviews Using Long Short-term Memory Recurrent Neural Network Framework
    作者: Wang, Chih-Chien;Day, Min-Yuh;Chen, Chien-Chang;Liou, Jia-Wei
    關鍵詞: Fake Review;Deep Learning;Neural Network;Long Short-term Memory (LSTM);Recurrent Neural Network (RNN)
    日期: 2018-06-13
    上傳時間: 2018-10-18 12:12:17 (UTC+8)
    摘要: Some unethical companies may hire workers (fake review spammers) to write reviews to influence consumers' purchasing decisions. However, it is not easy for consumers to distinguish real reviews posted by ordinary users or fake reviews post by fake review spammers. In this current study, we attempt to use Long Short-Term Memory (LSTM) Recurrent Neural Network (RNN) framework to detect spammers. In the current, we used a real case of fake review in Taiwan, and compared the analytical results of the current study with results of previous literature. We found that the LSTM method was more effective than Support Vector Machine (SVM) for detecting fake reviews. We concluded that deep learning could be use to detect fake reviews.
    關聯: Proceedings of the 2nd International Conference on E-commerce, E-Business and E-Government (ICEEG 2018)
    DOI: https://doi.org/10.1145/3234781.3234794
    顯示於類別:[資訊管理學系暨研究所] 會議論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML66檢視/開啟
    index.html0KbHTML102檢視/開啟

    在機構典藏中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回饋