淡江大學機構典藏:Item 987654321/115244
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 64198/96992 (66%)
造访人次 : 7929880      在线人数 : 2571
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/115244


    题名: Revenue maximization for telecommunications company with social viral marketing
    作者: Hong-Han Shuai, Chih-Ya Shen, Hsiang-Chun Hsu, De-Nian Yang, Chung-Kuang Chou, Jihg-Hong Lin, Ming-Syan Chen
    日期: 2015-10-29
    上传时间: 2018-10-18 12:11:55 (UTC+8)
    摘要: Viral marketing, a marketing strategy that leverages the influence power in intimate relationship, has become more prevalent due to the popularity of online social networking services in recent years. Consumers are more likely to make a purchase based on social media referrals. Since marketing through social media and traditional channels may target on different audiences, how to maximize the revenue of a telecommunications company by employing different advertising ways and selecting initial users for advertisements is a critical problem. Therefore, in this paper, we formulate a new research problem, namely Cost-Aware Multi-wAy Influence maXimization (CAMAIX) to address the need mentioned above. We design a 1/2-approximation algorithm with various pruning and budget allocation strategies to solve CAMAIX efficiently. We conduct extensive experiments on a large-scale real dataset from a telecommunications company. The results show that our proposed algorithm outperforms the baseline algorithms in both solution quality and efficiency.
    關聯: 2015 IEEE International Conference on Big Data (Big Data) (2015), p.1306-1310
    显示于类别:[應用數學與數據科學學系] 會議論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    index.html0KbHTML87检视/开启
    index.html0KbHTML114检视/开启

    在機構典藏中所有的数据项都受到原著作权保护.

    TAIR相关文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回馈