淡江大學機構典藏:Item 987654321/115207
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 55184/89457 (62%)
造访人次 : 10682146      在线人数 : 54
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/115207


    题名: An Approximation Solution for the Twin Prime Conjecture
    作者: Yensen Ni;Paoyu Huang;Yuhsin Chen
    关键词: Twin Primes;Number Theory;Prime Number;Incremental Range
    日期: 2019-03
    上传时间: 2018-10-16 12:10:56 (UTC+8)
    出版者: 淡江大學
    摘要: Journal of Applied Science and Engineering: In this study, we investigate the existence of numerous twin prime pairs according to the prime number inferred by the sieve of Eratosthenes. Given a number M=(6n+5)^2, at least three twin prime pairs can be found from the incremental range, which is increased from (6n+5)^2 to [6(n+1)+5]^2 for n=0 to infinite. Thus, we might be able to prove the twin prime conjecture proposed by de Polignac in 1849, that is, several prime numbers p exist for each natural number k by denoting p+2k as the prime number when k=1. Instead of twin prime pairs occurring irregularly, we infer that the twin prime conjecture solution might solved by satisfying two conditions: (1) eliminating the nontwin prime pairs in associated twin prime pairs would be regular, and (2) the incremental range from (6n+5)^2 to [6(n+1)+5]^2 for n=0 to ∞ would be regular. These conditions may not have been considered in previous studies that explored the question on whether numerous twin prime pairs exist, which has been one of the open questions in number theory for more than a century.
    關聯: Journal of Applied Science and Engineering 22(1), p.19-28
    DOI: 10.6180/jase.201903_22(1).0003
    显示于类别:[管理科學學系暨研究所] 期刊論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    An Approximation Solution for the Twin Prime Conjecture.pdf530KbAdobe PDF0检视/开启
    index.html0KbHTML51检视/开启

    在機構典藏中所有的数据项都受到原著作权保护.

    TAIR相关文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回馈