English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 56996/90690 (63%)
造访人次 : 12417414      在线人数 : 77
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻

    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/115168

    题名: Cluster Analysis for Student Performance in PISA2015 among OECD Economies
    作者: Chang, Dian-Fu;Chen, Chia-Chi
    关键词: Cluster analysis;Data mining;Regression analysis;OECD;PISA2005;OECD/PISA2015
    日期: 2018-11
    上传时间: 2018-10-11 12:10:14 (UTC+8)
    出版者: ICIC International
    摘要: This study selected OECD 35 economy members’ science, math, and reading scores and related impact factors as targets to mining the patterns and explore the main factors impact on the PISA2015 performance. The data selection was the first step; then this study applied observation clustering function with Minitab to determine the optimal clusters. The 3D scatterplot and 3D surface plot have been used to display the data structure. The dendrogram with three clusters drew by Ward linkage and Euclidean distance has a relatively high similarity level and a relatively low distance level in this study. The result reveals OECD economies in the cluster1 and cluster2 are needed to improve their students’ performance. The teaching hours per year in OECD economies has negative relationship with PISA2015 performance. While the teaching hours per year in economies can explain only 12.50% of the OECD/PISA2015 performance in the regression model. The OECD/PISA data provides an excellent databank for mining practices.
    關聯: ICIC Express Letters Part B: Applications, 9(11), pp.1139-1146
    DOI: 10.24507/icicelb.09.11.1139
    显示于类别:[教育政策與領導研究所] 期刊論文


    档案 描述 大小格式浏览次数
    Cluster Analysis for Student Performance in PISA2015 among OECD Economies.pdf157KbAdobe PDF0检视/开启



    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回馈