淡江大學機構典藏:Item 987654321/115024
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 62805/95882 (66%)
造访人次 : 3946983      在线人数 : 556
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/115024


    题名: Evaluation on crashworthiness and energy absorption of composite light airplane
    作者: Pu-Woei Chen;Ya-Yun Lin
    关键词: Composites;crashworthiness;light aircraft;impact;energy absorption;finite element method
    日期: 2018-08-18
    上传时间: 2018-09-27 12:11:00 (UTC+8)
    摘要: The main aim of this study was to explore the safety differences when using aluminum alloy and three different fiber reinforced composites as material for the cockpit and fuselage of light aircraft under crash landing. In accordance with the cockpit reduction amount stipulated by MIL-STD-1290A in which the reducing rates in all directions cannot exceed 15%, this study established the safety zones of impact speeds and impact angles. The overall safety zones of the carbon fiber reinforced composites and glass fiber reinforced composites cockpits were higher than that of the aluminum alloy cockpit by 38.56% and 32.12%, respectively. Among the four different fuselage materials, when carbon fiber reinforced composites was used as the cockpit material, except that the reducing rate for the crashing in the Y direction was slightly higher than the aluminum alloy cockpit, the reducing rate in the X direction and the inclined beam A direction during crashes were less than other materials, and the safety of its overall cockpit was also the most superior to other materials. The energy absorption capability of the aluminum alloy fuselage was better than the fuselages of all composite materials.
    關聯: Advances in Mechanical Engineering 10(8), p.1-12
    DOI: 10.1177/1687814018794080
    显示于类别:[航空太空工程學系暨研究所] 期刊論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    Evaluation on crashworthiness and energy absorption of composite light airplane.pdf289KbAdobe PDF166检视/开启
    index.html0KbHTML283检视/开启

    在機構典藏中所有的数据项都受到原著作权保护.

    TAIR相关文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回馈