淡江大學機構典藏:Item 987654321/115021
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 64187/96966 (66%)
造访人次 : 11335880      在线人数 : 69
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/115021


    题名: A facile route for the synthesis of heterogeneous crystal structures in hierarchical architectures with vacancy-driven defects via the oriented attachment growth mechanism
    作者: Li Cheng Kao;Yifan Ye;Yi-Sheng Liu;Chung Li Dong;Jinghua Guo;Sofia Ya Hsuan Liou
    日期: 2018-03-30
    上传时间: 2018-09-27 12:10:50 (UTC+8)
    出版者: Royal Society of Chemistry
    摘要: One-dimensional rutile TiO2 nanorod arrays with a tunable morphology and intact crystalline sub-nano structures attached are successfully fabricated as a large-scale film based on substrates. An anatase/rutile TiO2 crystal structure grown in a hierarchical architecture is achieved by forming hybrid organic–inorganic interfaces in a solvent-based environment. The oriented attachment growth dominant pathway provides an easy and reproducible method to synthesize unnaturally shaped nanostructures with heterogeneous crystalline structures, the co-existence of which is difficult in one-dimensional array systems. The morphology and crystal structures of the attached sub-nano nanoparticles are also highly related to the solvent composition ratio due to the hydrolysis–condensation reaction. The small misorientation between the lattice planes of the two distinct phases leads to the formation of interface dislocations, which are assigned as oriented attachment growth-induced defects. Resonant inelastic X-ray scattering reveals that the obvious dd excitation feature of the TiO2 nanorod arrays after the sub-nano structure attachment is related to the growth-induced oxygen vacancies, which demonstrates the existence of Ti3+ at the interface. The interface Ti3+ can activate the Ti–OH species, resulting in an enhancement in photocatalytic activity. TiO2 nanorod arrays based on substrates with heterogeneous crystal structures and remarkable crystalline stability have potential as promising photocatalysts in the energy and environmental fields.
    關聯: Journal of Materials Chemistry A 6(23), p.10663-10673
    DOI: 10.1039/C8TA01027G
    显示于类别:[物理學系暨研究所] 期刊論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    A facile route for the synthesis of heterogeneous crystal structures in hierarchical architectures with vacancy-driven defects via the oriented attachment growth mechanism.pdf1837KbAdobe PDF1检视/开启
    index.html0KbHTML288检视/开启

    在機構典藏中所有的数据项都受到原著作权保护.

    TAIR相关文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回馈