淡江大學機構典藏:Item 987654321/114966
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 64178/96951 (66%)
造访人次 : 10697756      在线人数 : 19650
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/114966


    题名: Robust bootstrap control charts for percentiles based on model selection approaches
    作者: Jyun-YouChiang;Y.L. Lio;H.K.T.Ng;Tzong-RuTsai;Ting Li
    关键词: Bootstrap control chart;Maximum likelihood estimate;Model discrimination;Percentiles;Shape-scale distribution
    日期: 2018-09
    上传时间: 2018-09-20 12:11:47 (UTC+8)
    出版者: Elsevier
    摘要: This paper presents two model selection approaches, namely the random data-driven approach and the weighted modeling approach, to construct robust bootstrap control charts for process monitoring of percentiles of the shape-scale class of distributions under model uncertainty. The generalized exponential, lognormal and Weibull distributions are considered as candidate distributions to establish the proposed process control procedures. Monte Carlo simulations are conducted with various combinations of the percentiles, false-alarm rates and sample sizes to evaluate the performance of the proposed robust bootstrap control charts in terms of the average run lengths. Simulation results exhibit that the two proposed robust model selection approaches perform well when the underlying distribution of the quality characteristic is unknown. Finally, the proposed process monitoring procedures are applied to two data sets for illustration.
    關聯: Computers and Industrial Engineering 123, p.119-133
    DOI: 10.1016/j.cie.2018.06.012
    显示于类别:[統計學系暨研究所] 期刊論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    index.html0KbHTML199检视/开启
    Robust bootstrap control charts for percentiles based on model selection approaches.pdf969KbAdobe PDF1检视/开启

    在機構典藏中所有的数据项都受到原著作权保护.

    TAIR相关文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回馈