English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 64178/96951 (66%)
造訪人次 : 10003018      線上人數 : 18413
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/114966


    題名: Robust bootstrap control charts for percentiles based on model selection approaches
    作者: Jyun-YouChiang;Y.L. Lio;H.K.T.Ng;Tzong-RuTsai;Ting Li
    關鍵詞: Bootstrap control chart;Maximum likelihood estimate;Model discrimination;Percentiles;Shape-scale distribution
    日期: 2018-09
    上傳時間: 2018-09-20 12:11:47 (UTC+8)
    出版者: Elsevier
    摘要: This paper presents two model selection approaches, namely the random data-driven approach and the weighted modeling approach, to construct robust bootstrap control charts for process monitoring of percentiles of the shape-scale class of distributions under model uncertainty. The generalized exponential, lognormal and Weibull distributions are considered as candidate distributions to establish the proposed process control procedures. Monte Carlo simulations are conducted with various combinations of the percentiles, false-alarm rates and sample sizes to evaluate the performance of the proposed robust bootstrap control charts in terms of the average run lengths. Simulation results exhibit that the two proposed robust model selection approaches perform well when the underlying distribution of the quality characteristic is unknown. Finally, the proposed process monitoring procedures are applied to two data sets for illustration.
    關聯: Computers and Industrial Engineering 123, p.119-133
    DOI: 10.1016/j.cie.2018.06.012
    顯示於類別:[統計學系暨研究所] 期刊論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML198檢視/開啟
    Robust bootstrap control charts for percentiles based on model selection approaches.pdf969KbAdobe PDF1檢視/開啟

    在機構典藏中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回饋