English  |  正體中文  |  简体中文  |  Items with full text/Total items : 58817/92529 (64%)
Visitors : 647295      Online Users : 59
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/114947


    Title: On a uniqueness theorem of Sturm-Liouville equations with boundary conditions polynomially dependent on the spectral parameter.
    Authors: Ping, Wang Yu;Lien, Ko Ya;Tsun, Shieh Chung
    Keywords: Inversespectralproblem;Inversenodalproblem;Spectralparameter;Potential;Weyl m-function
    Date: 2018-03-05
    Issue Date: 2018-09-20 12:10:44 (UTC+8)
    Publisher: Springer
    Abstract: nverse nodal problems for Sturm–Liouville equations associated with boundary conditions polynomially dependent on the spectral parameter are studied. The authors show that a twin-dense subset W_B([a, b]) can uniquely determine the operator up to a constant translation of eigenparameter and potential, where [a, b] is an arbitrary interval which contains the middle point of the domain of the operator and B is a subset of N which satisfies some condition (see Theorem 4.2).
    Relation: Boundary Value Problems, 2018:28
    DOI: 10.1186/s13661-018-0948-4
    Appears in Collections:[Graduate Institute & Department of Mathematics] Journal Article

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML99View/Open
    On a uniqueness theorem of Sturm-Liouville equations with boundary conditions polynomially dependent on the spectral parameter.pdf1436KbAdobe PDF0View/Open

    All items in 機構典藏 are protected by copyright, with all rights reserved.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - Feedback