English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 57615/91160 (63%)
造访人次 : 13554730      在线人数 : 298
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻

    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/114867

    题名: Frequency striations induced by moving nonlinear internal waves and applications
    作者: Yang, T. C.;Huang, C.-F.;Huang, S. H.;J.-Y. Liu
    日期: 2017-07
    上传时间: 2018-08-10 12:10:23 (UTC+8)
    摘要: Modal interferences are evident in the spectrogram of broadband signals propagated over distances and received on a single receiver. Plotted against range and frequency, the spectrogram displays striated bands of constant acoustic intensity levels as explained by the waveguide-invariant theory, the slope of which can be used to estimate the source range by the waveguide-invariant parameter “beta.” Given a vertical array of receivers, one finds, however, no frequency striation in the depth-integrated acoustic energy, as the total energy corrected for geometrical spreading remains “conserved” except for mode attenuations. When nonlinear solitary internal waves (SIWs) are present in the propagation path, one finds a different phenomenon: the depth-integrated energy will display striations with respect to time and frequency. In this case, the striation slope is related to the source-to-SIW range, and not the source-receiver range. The striation is caused predominantly by mode coupling (as opposed to mode interference), which changes the mode amplitudes as the SIWs move. Theory and simulations are developed in this paper. As an application, one can use the SIW-induced striations to monitor the positions (and wavefronts) of nonlinear internal waves on a continuous time basis. This method is evaluated using the SWARM95 experimental environment to address the real-world issues.
    關聯: IEEE Journal of Oceanic Engineering 42(3), p.663–671
    DOI: 10.1109/JOE.2016.2593865
    显示于类别:[電機工程學系暨研究所] 期刊論文


    档案 描述 大小格式浏览次数



    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回馈