English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 56431/90260 (63%)
造訪人次 : 11701354      線上人數 : 42
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/114767


    題名: 置放彈性介質內之軸向傳輸三維弦線的參數振動及穩定性分析
    其他題名: Parametric vibrations and stability of an axially moving 3-D string guided by a non-linear elastic foundation
    作者: 黃詩婷;Huang, Shih-Ting
    貢獻者: 淡江大學航空太空工程學系碩士班
    王怡仁;Wang, Yi-Ren
    關鍵詞: 三維之彈性弦線(3D elastic string);Gyroscope效應(Gyroscope effect);3D elastic string;Gyroscope effect;Lagrange;Runge-Kutta
    日期: 2017
    上傳時間: 2018-08-03 15:03:23 (UTC+8)
    摘要: 本文研究分析軸向運動弦線造成之側向及橫向穩定性的分析及各種參數對於系統振動之影響。本研究主體係以三個自由度的軸向運動橫向振動為主之傳送系統,此系統之運輸帶以一三維之彈性弦線取代並簡化之。而傳輸系統架設在一個不斷有軸向速度的情況下,使此弦線不會因停滯而產生Gyroscope效應的影響。本弦線主體下方以彈簧做為支撐,模擬此弦線置放於elastic foundation 之情況。
    吾人使用Lagrange法,分別考量弦線之動能及位能。此外,由於我們考慮的弦線系統假設是一個軸向移動之弦線,其兩端以滾輪固定。在弦線之E.O.M推導出來之後,吾人再以牛頓定理,將弦線之橫向兩個DOF以非線性彈簧支撐之,模擬此弦線埋設於某種彈性介質內。
    最後利用四階Runge-Kutta法找出系統之Floquet Transition Matrix,藉由此矩陣便可求得特徵值。吾人代入不同之初始條件,搭配Floquet Multipliers之判定法則,可繪製出系統各運作情況下之Basin of Attraction圖形,藉此觀察系統在不同減振器擺放位置及不同運作情形下之穩定性。
    In this paper, we analyze the analysis of lateral and transverse stability caused by axial motion chords and the influence of various parameters on system vibration. In this study, the main system is a three-degree-of-freedom axial motion-based transduction system, which is replaced and simplified by a 3-D elastic string. And the transmission system is erected in a continuous axial velocity, so that the string will not be stagnant and produce Gyroscope effect. The main body of the string below the spring as a support to simulate the string placed in the case of the elastic foundation.
    We consider the kinetic energy of the string and bit energy by using Lagrange method. In addition, since the chord system we consider is assumed to be an axially moving string, both ends are fixed with rollers. After deducing the E.O.M of the string, we then use the Newton''s theorem to support the two DOF of the string in a non-linear spring to simulate the embedding of the string in a certain elastic medium.
    Finally, the fourth-order Runge-Kutta method is used to find the Floquet Transition matrix of the system. The initial condition of the system is different from that of Floquet Multipliers, and the attractive pattern of the system can be drawn. The stability of different shock absorbers and their different operating conditions.
    顯示於類別:[航空太空工程學系暨研究所] 學位論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML77檢視/開啟

    在機構典藏中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回饋