淡江大學機構典藏:Item 987654321/114685
English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 64178/96951 (66%)
造訪人次 : 10967818      線上人數 : 21453
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/114685


    題名: 基於線性判別分析之視覺物件追蹤
    其他題名: Visual object tracking via LDA
    作者: 林智慶;Lin, Chih-Ching
    貢獻者: 淡江大學資訊工程學系碩士在職專班
    顏淑惠;Yen, Shwu-Huey
    關鍵詞: FFT convolution;LDA;Visual object tracking;快速傅立葉轉換卷積;視覺物件追蹤;線性判別分析
    日期: 2017
    上傳時間: 2018-08-03 15:00:43 (UTC+8)
    摘要: 本篇論文提出利用線性判別分析 (LDA, Linear discriminant analysis) 以及 part-based 的追蹤策略於複雜環境中進行單目標視覺物件追蹤。使用相同預先一次性訓練得到的負例樣本平均值與共同變異量,再加上目標物不同位置的正例樣本即可快速訓練出不同的部件 (part) 分類器。利用快速傅立葉轉換卷積計算追蹤畫格影像特徵的相似度,再使用投票方式結合不同影像特徵的部件與整體的目標物位置,來完成正確及快速的視覺物件追蹤。在100個影片中使用三種不同強健度評估方式來測試追蹤器之精確度與成功率,由量化與質化的實驗結果顯示我們所提出的方法在正確性與速度上都有很好的表現,並能與其他先進的追蹤演算法匹敵。
    Tracking-by-detection methods treat the target location as a classification problem in which the approach SVM + HOG shows a good performance. However, training a good SVM classifier is cost expensive. In this paper, we replace SVM by linear discriminant analysis (LDA) for classification where the mean and covariance of negative examples are evaluated only once. Not only the training is much cheaper, but testing time is also very efficient. The proposed method uses HOG and color features for image representation. To defense partial occlusion issue, part-based tracking strategy is adopted and the model is updated according to Peak to Sidelobe Ratio (PSR) of parts. And conclude the classification results from parts and holistic detections by voting. To speed up classification of LDA classifiers with features from search window, the FFT convolution is employed to reduce the computational efforts of dot product on feature vectors. We evaluate our approach on 100 public benchmark challenging video sequences, both qualitative and quantitative experiments show that our approach is competitive to state-of-the-art methods.
    顯示於類別:[資訊工程學系暨研究所] 學位論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML212檢視/開啟

    在機構典藏中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回饋