淡江大學機構典藏:Item 987654321/114666
English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 64191/96979 (66%)
造訪人次 : 8571636      線上人數 : 8504
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/114666


    題名: A dynamic time weight-based collaborative filtering recommendation system
    其他題名: 以動態的時間權重為基礎的協同過濾系統
    作者: 黃昱勳;Huang, Yu-Shiun
    貢獻者: 淡江大學資訊工程學系碩士班
    陳以錚;Chen, Yi-Cheng
    關鍵詞: Collaborative Filtering;dynamic;Recommendation System;Time Weight;協同過濾;時間權重;動態;推薦系統
    日期: 2017
    上傳時間: 2018-08-03 15:00:06 (UTC+8)
    摘要: 我們在此利用人類大腦記憶原理來給予不同的時間區段相對應的衰退函數:瞬時記憶等級、短期記憶等級、長期記憶等級,每當有一筆新的評級進來時,與其相關的項目群集就會被激活來到新的衰退等級(瞬時記憶等級),我們會設置一個門檻值,若是在一定時間內的激活次數小於門檻值的話,我們會給予相對應的懲罰,反之若是一個群集持續被激活的話,那我們會將他的衰退函數提升至更高的等級(短期記憶等級),同樣的若是在一定時間內激活次數小於門檻值的話,我們還是會給予他懲罰,而最後若是這個群集有持續被激活,我們會將他的衰退等級提升至最高級(長期記憶等級),一旦達到這個等級,就算之後的激活次數沒有達到門檻值也不會有懲罰,只是會讓它隨著他的衰退函數而下降。最後將衰退的權重加權在以項目為基礎的協同過濾系統的預測函數內,這是屬於後處理的方式。
    Traditional time weighted collaborative filtering systems have a single decay function. But, it is not reasonable that lets the weight decay by only function. We propose a method to solve it. In this paper, we propose a new method improve on time weighted collaborative filtering. We use the principle of human brain memory to give different time segments corresponding to the recession function: instantaneous memory level, short-term memory level, long-term memory level, whenever there is a new rating come in, and its related item cluster will be activated to a new recession level (instantaneous memory level). We set a threshold value. If the number of activations is less than the threshold for a certain period of time, we will give the corresponding penalty, otherwise we will raise his decay function to a higher level (short-term memory level), and so on. Once the long-term memory level is reached, even if the number of activations does not reach the threshold, there will be no penalty, but will let it fall with his decay function. Finally, the weight of the decay is weighted within the Item-based predictive function, which is a post-processing approach.
    顯示於類別:[資訊工程學系暨研究所] 學位論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML188檢視/開啟

    在機構典藏中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回饋