English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 56379/90243 (62%)
造访人次 : 11686441      在线人数 : 43
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/114616


    题名: 不同矩柱表面之極值風壓分佈及局部風載重設計
    其它题名: Investigation on extreme pressure distribution and associated local wind loads on rectangular prism models
    作者: 詹政翰;Jhan, Jheng-Han
    贡献者: 淡江大學土木工程學系碩士班
    羅元隆;Lo, Yuan-Lung
    关键词: 極值風壓;非超越機率分布;Reverse-Weibull函數;形狀參數;設計風載重理論;Extreme wind pressure;Non-exceedance probability distribution;Reverse-Weibull distribution;Shape parameter;Local design wind loads
    日期: 2017
    上传时间: 2018-08-03 14:58:23 (UTC+8)
    摘要: 本研究為了探討不同矩柱表面之極值風壓分佈與風載重設計的問題,分別以高寬比(H⁄√BD)3、6搭配7種不同深寬比(D/B)矩形斷面模型當作研究對象,將14種矩形斷面模型各自放入風洞中進行表面風壓量測,採樣足夠的實驗筆數後將所得到之數據繪製成極值風壓係數的非超越機率分布(累積機率密度分布)。接著以Reverse-Weibull函數公式作為擬合非超越機率分布曲線,找出各模型上風壓孔以Reverse-Weibull函數所擬合出曲線之形狀參數與計算曲線之變異係數(擾動程度),再將擬合之結果繪成等高線圖可發現形狀參數之分布差異與風壓孔的位置及矩形斷面尺寸相關。另外,根據局部設計風載重理論得知,極值設計風速以及極值風壓係數的乘冪關係式所涉及的非超越機率分布曲線對局部設計風載重的影響進行探討,且與國外規範中常見以Cook-Mayne值進行比較,找出在不同非超越機率分布曲線下所算出的載重設計值。經過數據分析得知,形狀參數會受到風壓孔位置不同而有所差別,值的範圍約在0 ~ 0.5之間,形狀參數皆為正值代極值風壓係數有其上限值,且大部分模型在迎風面與背風面形狀參數值會較高,接著從研究結果來看我們只能得知形狀參數值的範圍,其分布趨勢則無一定規則。此外,非超越機率分布曲線呈現非高斯的特性與我國規範假設不同。一般來說,Cook and Mayne (1985)所建議的78%非超越機率設計百分比是以Gumbel分布曲線來假設,本研究也有以一個模型比較Reverse-Weibull函數與Gumbel函數所擬合出的非超越機率設計百分比,結果為Gumbel函數算出之非超越機率設計百分比會較保守。
    最後若依照本研究結果並進行建議,可提出局部風載重的設計值應隨著不同極值分布曲線來調整,才能得到較合理之設計值。
    This research intends to investigate the design wind loads of various rectangular cross-sectional high-rise buildings in terms of extreme pressure coefficients. By6 conducting wind pressure measurement tests in a well simulated turbulent boundary layer flow, 14 high-rise building models were individually processed a huge amount of records to formulate each extreme value distribution for each pressure tap over the surface. A Reverse-Weibull function was adopted to fit the shape parameter of each distribution and the coefficient of variation was calculated to indicate the fluctuation level of extreme values. From the contours of both parameters of 14 building models, it was concluded that the range of fitted shape parameters is from 0.0 to 0.5 and the coefficient of variation followed the tendency of turbulence intensity. Moreover, the optimal design pressure coefficients were found based on iterative calculation of target non-exceedance probability of 0.001 for structural classification III and then compared with the Cook and Mayne coefficients. It was generally found in these 14 building models, the suggested 78% by the Cook and Mayne coefficient is more conservative than the optimal coefficients and a reasonable re-distributed design fractile map for design is strongly recommend.
    显示于类别:[土木工程學系暨研究所] 學位論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    index.html0KbHTML82检视/开启

    在機構典藏中所有的数据项都受到原著作权保护.

    TAIR相关文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回馈