English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 56431/90260 (63%)
造訪人次 : 11701884      線上人數 : 49
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/114613


    題名: 以成長價值模型與變數誤差模型建構營建企業評價模型
    其他題名: Building valuation model for construction enterprise with growth value models and errors-in-variables models
    作者: 張葳;Chang, Wei
    貢獻者: 淡江大學土木工程學系碩士班
    葉怡成;Yeh, I-Cheng
    關鍵詞: 企業評價;成長價值模型;變數誤差迴歸;sand column;Laminated;Soft clay;numerical modeling;bearing capacity
    日期: 2017
    上傳時間: 2018-08-03 14:58:17 (UTC+8)
    摘要: 成長價值模型認為股票的內在價值是淨值與股東權益報酬率的綜效的結果,公式為 P/B=k∙(1+ROE)^m,其中k、m為待定係數。由於產業、規模、風險這些公司的穩定的重要特性可能會影響k、m值,因此本文的目的在於建立k、m值與這些特性之間的關係,進一步改善模型的預測能力。本研究將2005年至2016年上市上櫃公司的資料分,將各年份以產業分成營建、金融、傳產、電子四個資料集,以規模或風險的大小分成十個資料集,分別估計k、m值。由於GVM模型的自變數ROE存在量測誤差,因此利用變數誤差迴歸(Errors-in-variables Regression)克服此問題,以精確估計模型參數k, m值。結果顯示 (1) 傳統迴歸分析估計的迴歸曲線有嚴重偏差,變數誤差迴歸可以有效矯正此種偏差。(2) 產業影響k, m值。營建的k值較大,金融次之,傳產、電子最小。傳產、電子的m值較大,金融次之,營建最小。(2) 公司的規模對k, m值的影響最大。規模愈大,價值係數愈小,成長係數愈高。顯示大型公司有較高的獲利持續性。(3) 公司的風險對k, m值的影響不明顯。
    GVM valuation model considers that PBR is the function of ROE. There are two coefficients in the function. One of them is value coefficient (k), the other is growth coefficient (m). The main purpose of this study is to improve the GVM model by regulating coefficients k and m of the GVM model by using the industry, scale and the risk, which would result in more accurate prediction of PBR. In this research, to calculate the value of k and m, we categorized the data of listed companies from 2005 to 2016 into four data sets according to industrial types (Construction, Finance, Traditional, and Electronic industry). Also, based on the scale or risk, we divided them into ten data sets from low to high. To overcome measurement error in the independent variable(ROE) of GVM model, adopted the Errors-in-variables Regression(EIV) to precisely estimate coefficient k and m. The result shows that: (1) There are some significant biases in the regression curve generated by traditional regression analysis, but it can be correct by using the errors-in-variables regression analysis. (2) Industry category affects the value of k and m. Construction industry has the highest value of k, followed by finance, and the traditional and electronic industry have the lowest value. In contrast, the effects of industry category on the value of m appear the opposite order. (3) The scale of the company has the most significant effects to the value of k and m. The greater the scale is, the less the value coefficient k is whereas the higher the growth coefficient m is, which indicates that large companies get the higher persistence of earning. (4) The risk of the companies won’t significantly affect the value of k and m.
    顯示於類別:[土木工程學系暨研究所] 學位論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML100檢視/開啟

    在機構典藏中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回饋