English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 64176/96941 (66%)
造訪人次 : 9188057      線上人數 : 14426
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/114488


    題名: 電子化政府查報案件自動分類設計之研究 : 以台北市政府為例
    其他題名: A study of automatic classification and design of e-government case investigation : taking Taipei city government as an example
    作者: 蕭群殷;Hsiao, Chun-Yin
    貢獻者: 淡江大學資訊管理學系碩士在職專班
    蕭瑞祥;Shaw, Ruey-Shiang
    關鍵詞: 機器學習;文件自動分類;市容查報;系統雛形;Machine learning;document classification;City's checking and feedback reports;System prototyping
    日期: 2017
    上傳時間: 2018-08-03 14:54:15 (UTC+8)
    摘要: 『電子化政府』是藉由資訊科技的應用以提升政府行政效率與服務品質。近年來每年市容通報案件逐年成長到年近20萬件的數量,迫使政府需投入大量的人力來處理,使得市政效率下降與成本加劇,因此建立高效率、操作容易與人性化界面的網站平台,讓市民隨時通報市容改善案件,提升市府改善市容工程的效率與品質已是重要的關鍵課題。
    本研究以文件自動分類切入,透過系統雛形法來做為研究方法,使用大量的市容查報案件的資訊進行分類模型訓練,並輔以使用者體驗來進行結果探討,實驗結果獲得87.04%的準確率高於傳統的分類60%。期望透過本研究可以提供市容查報系統業者進行系統開發時的技術參考。
    The "e-government" aims at enhancing the efficiency of government administration and service quality through the application of information technology. In recent years, the reported cases about the city’s appearance has been gradually increasing year by year to a number of nearly 200,000 for a year, forcing the government to invest a lot of manpower to deal with it. This has thus caused a decline in the efficiency of municipal administration and increase in relevant costs. Therefore, in terms of promoting the efficiency of handling reports and improvement of the city’s appearance, it is an important and critical task for the government to establish an efficient, easy-to-operate website platform which can be used by residents to report related issues anytime.

    In this study, system prototyping was adopted as the research methodology based on automatic text categorization of the large quantity of reports about the appearance of the city for conducting classification model training. Moreover, it also explored the results according to user experience. The results of the experiment showed that it acquired 87.04% accuracy rate, which was higher than the accuracy rate by conventional classification which is at 60%. It is expected that the study could provide technical reference for the system development service providers.
    顯示於類別:[資訊管理學系暨研究所] 學位論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML162檢視/開啟

    在機構典藏中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回饋