淡江大學機構典藏:Item 987654321/114450
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 64198/96992 (66%)
Visitors : 7962925      Online Users : 9003
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/114450


    Title: 第二階段自我相關一般線性輪廓的監控方法
    Other Titles: Phase II monitoring schemes for autocorrelated general linear profiles
    Authors: 賴韻如;Lai, Yun-Ju
    Contributors: 淡江大學統計學系碩士班
    王藝華
    Keywords: First order autocorrelation;MEWMA control chart;MEWMA管制圖;Phase II;Profile monitoring;一階自我相關;第二階段;輪廓監控
    Date: 2017
    Issue Date: 2018-08-03 14:52:58 (UTC+8)
    Abstract: 近年來,有些產品品質的好壞或製程是否穩定不再只是利用產品或製程的品質特徵是否滿足某個品質特徵的分配來判斷,而是藉由資料是否滿足某個函數關係來判斷,這種類型的資料稱為輪廓資料,而監控此種資料的過程則稱為輪廓監控。在過去的文獻中,通常假設製程的觀察值在不同時間之下具有相同且彼此獨立的常態分配,但是許多設備或系統的連續性製程會使得模型的隨機誤差項具有相關性。因此在本文中,考慮在第二階段一般線性輪廓模型,且輪廓間具有一階自我相關時,我們提出新的監控方法並與舊有的方法做比較。由模擬的結果可以得到,本文提出的 MEWMA (multivariate exponentially weighted moving average) 監控方法比舊有的方法好。最後會透過一個例子來說明如何實際應用本文所提出的監控方法。
    Recently, for some applications, the quality of a process or product cannot be represented by a distribution of a quality characteristic but better characterized and summarized by a functional relationship. This kind of data is called a profile. Profile monitoring is to check the stability of this relationship over time. In the
    literature, it is often assumed that the error terms of models are independent and identically normally distributed. However, in some applications, there is an autocorrelation between the error terms due to continuous processes. Thus, general linear profiles with a first
    order autocorrelation between profiles in Phase II are considered in this study. We propose new monitor schemes for this profile data and compare with existing monitor schemes. By the simulation results, our proposed MEWMA (multivariate exponentially weighted moving average) scheme has better performance than the existing monitor schemes. Finally, an example is used to illustrate the applicability of the proposed scheme.
    Appears in Collections:[Graduate Institute & Department of Statistics] Thesis

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML195View/Open

    All items in 機構典藏 are protected by copyright, with all rights reserved.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - Feedback