淡江大學機構典藏:Item 987654321/114269
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 64178/96951 (66%)
Visitors : 10776387      Online Users : 19237
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/114269


    Title: Nonlinear dimension reduction based on the cumulative slicing mean estimation
    Other Titles: 基於累積切片平均估計的非線性維度縮減法
    Authors: 王子豪;Wang, Tzu-Hao
    Contributors: 淡江大學數學學系碩士班
    吳漢銘;Wu, Han-Ming
    Keywords: 累積切片估計;等距特徵映射;流形學習;非線性維度縮減;切片逆迴歸;Cumulative slicing estimation;isometric feature mapping;manifold learning;Nonlinear dimension reduction;Sliced inverse regression
    Date: 2017
    Issue Date: 2018-08-03 14:47:08 (UTC+8)
    Abstract: 文獻中,對於流形學習的非線性維度縮減已有不少研究。其中,迴
    歸等軸距切片逆迴歸法(ISOSIR),是屬於一種半監督式的學習演算
    法,已被提出並証明它可以有效地探索非線性流形資料隱含的幾何
    結構,例如瑞士捲資料。ISOSIR 是採用均值法做為一個基礎的群集
    分析,應用到預先計算好的資料集等距距離矩陣。然而,反應變數
    在群內及群間的順序訊息在群集之後會被忽略,而順序結構是非線
    性資料很重要的特徵之一。另一方面,假設資料的具有類別資訊,
    等距離矩陣的計算並沒有考慮到這個資訊。在本研究中,我們擴展
    ISOSIR 和等軸距累積切片平均估計法,提出一監督式演算法,用以
    解決上述這兩個問題。我們進行了模擬研究和實際資料分析,結果
    顯示所提出的方法可以揭示非線性流形資料的幾何結構,同時與監
    督式的ISOSIR 表現相當。我們更進一步研究,應用所找出的低維度
    資料特徵於實際資料的分類及回歸問題。
    A number of studies have been conducted on the nonlinear dimension reduction
    for manifold learning in the literature. Among them, the isometric sliced
    inverse regression (ISOSIR), a semi-supervised learning algorithm, has been
    proposed and shown to be useful for exploring the embedded geometric
    structure of the nonlinear manifold data set such as the Swiss roll. ISOSIR
    applied K-means as a base clustering method to the pre-calculated isometric
    distance matrix of the data set. However, the ordering information of
    response both within and between the resulting clusters was ignored where
    the ordering structure was one of the most important characteristics of a
    nonlinear manifold data set. On the other hand, the construction of the
    isometric distance matrix did not consider the class labels of data if they
    were available. In this study, we are motivated to settle these two defects
    and propose the supervised extensions of ISOSIR and isometric cumulative
    slicing mean estimation. We conducted the simulation studies and real data
    analysis and shown that the proposed method can reveal the geometric
    structure of a nonlinear manifold data set and the results were comparable
    to the supervised ISOSIR. We further investigated the applications of the
    found features for the classification and regression problems to the real
    world data sets.
    Appears in Collections:[Department of Applied Mathematics and Data Science] Thesis

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML169View/Open

    All items in 機構典藏 are protected by copyright, with all rights reserved.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - Feedback