淡江大學機構典藏:Item 987654321/114265
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 64191/96979 (66%)
造访人次 : 8485142      在线人数 : 8299
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/114265


    题名: 雙蜘蛛圖的強反魔方標號
    其它题名: The strongly anti-magic labeling of double spider graphs
    作者: 金斌輝;Chin, Pin-Hui
    贡献者: 淡江大學數學學系碩士班
    潘志實;Pan, Zhi-Shi
    关键词: 強反魔方;雙蜘蛛圖;標號;strongly anti-magic;double spider graphs
    日期: 2017
    上传时间: 2018-08-03 14:47:01 (UTC+8)
    摘要: 給定任意圖G=(V,E),|V(G)|=n, |E(G)|=m,圖G的一個標號f:E→{1,2,…,m}為一雙射函數。假設對於任意頂點u,令
    s(u)=∑_(e∈E(u))〖f(e)〗,其中E(u)為所有與u相連的邊的集合,若對於任意i≠j,s(i)≠s(j),則稱此標號為反魔方標號。假設f是一個圖G的反魔方標號,令deg⁡(u)為所有與u相連的邊的數量總和,若對於任意兩個不同的頂點u,v,deg⁡(u)<deg⁡(v),滿足s(u)<s(v),則稱f為圖G的一個強反魔方標號。

    在本文中我們想要討論的是雙蜘蛛圖。由於此圖的部分形式被證明有反魔方,因此我們要證明對於任意的雙蜘蛛圖都有強反魔方標號。
    Let G=(V,E) be a simple graph with n vertices and m edges. A labeling of G is a bijection from the set of edges to the set {1,2,…,m} of integers, for each vertex, its vertex sum is defined to be the sum of labels of all edges incident to it. If all vertices have distinct vertex sums, we call this labeling anti-magic. Suppose f is an anti-magic labeling of G, and for any two vertices u,v with deg(u) < deg(v), if vertex sum of u is strictly less than vertex sum of v, then we say f is a strongly anti-magic labeling of G.

    In this thesis, we restrict our graphs to double spider graphs. Since some of double spider graphs have already been proven to be anti-magic, we will prove a stronger result here, that is, all double spider graphs are strongly anti-magic.
    显示于类别:[應用數學與數據科學學系] 學位論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    index.html0KbHTML198检视/开启

    在機構典藏中所有的数据项都受到原著作权保护.

    TAIR相关文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回馈