淡江大學機構典藏:Item 987654321/113682
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 58286/91808 (63%)
造访人次 : 13825040      在线人数 : 54
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/113682


    题名: Plasmon-Induced Visible-Light Photocatalytic activity of Au Nanoparticle-Decorated Hollow Mesoporous TiO2: A View by X-ray Spectroscopy
    作者: Kai-Shiang Yang;Ying-Rui Lu;Ying-Ya Hsu;Chin-Jung Lin;Chuan-Ming Tseng;Sofia Ya Hsuan Liou;Krishna Kumar;Da-Hua Wei;Chung-Li Dong;Chi-Liang Chen
    日期: 2018-03-12
    上传时间: 2018-06-14 12:10:14 (UTC+8)
    出版者: ACS Publications
    摘要: Plasmonic photocatalyst of Au nanoparticle-decorated hollow mesoporous TiO2 with 0, 0.1, 0.25, 0.5, and 1% Au content was successfully synthesized by a hydrothermal method. Controlling the particle size of Au coated on TiO2 hollow microspheres (AuTHMSs) is expected to improve the photocatalytic ability. Our results of X-ray absorption spectroscopy (XAS) indicated that the coated Au ions are nulvalent and cause a lattice distortion as well as a variation in Ti 3d orbital orientation. It is also inferred that TiO6 octahedral symmetry is significantly affected by the Au incorporation, giving rise to an increase in the Ti 3d t2g unoccupied state. UV–visible absorption spectra and I–V measurements were performed to examine localized surface plasmon resonance (LSPR) effect and photoelectrocatalytic (PEC) ability. We present the first in situ XAS measurements on AuTHMS system, which enabled us to correlate the electronic structure and photocatalytic property of the material. An analysis of the results showed an LSPR effect triggered by the Au nanoparticles that provided a conductive path to the excited charge carriers, resulting in an enhanced photocurrent due to the charge transfer from Au 5d to Ti 3d orbitals under solar illumination. The photocurrent density of AuTHMSs showed an increase with Au content with a maximum for 0.5% Au, whereas in the case of 1% Au the photocurrent profile was similar to the 0% Au. Furthermore, a comparison of the XAS and PEC performance implied that the lattice distortion and the corresponding symmetry changes together with the size of Au particle substantially influenced the rate of hot electron charge transfer, resulting in the variation of PEC activity of AuTHMS samples with a higher activity for 0.5% Au. Our studies are expected to fabricate chemically stable innovative structures with enhanced surface area that would boost the photocatalytic efficiency, which is a vital factor for environmental and energy applications.
    關聯: The Journal of Physical Chemistry 122(12), p.6955-6962
    DOI: 10.1021/acs.jpcc.8b00205
    显示于类别:[物理學系暨研究所] 期刊論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    index.html0KbHTML17检视/开启
    Plasmon-Induced Visible-Light Photocatalytic activity of Au Nanoparticle-Decorated Hollow Mesoporous TiO2 A View by X-ray Spectroscopy.pdf5056KbAdobe PDF0检视/开启

    在機構典藏中所有的数据项都受到原著作权保护.

    TAIR相关文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回馈