The electrodeposition nature of copper on a gold electrode in a 4.8 pH CuSO4 solution was inquired using X-ray absorption spectroscopy, electrochemical quartz crystal microbalance, and thermal desorption spectroscopy techniques. Our results point out that the electrodeposition of copper prompts the formation of stable oxi-hydroxide species with a formal oxidation state Cu+ without the evidence of metallic copper formation (Cu0). Moreover, the subsequent anodic polarization of Cu2Oaq yields the formation of CuO, in the formal oxidation state Cu2+, which is dissolved at higher anodic potential. It was found that the dissolution process needs less charge than that required for the electrodeposition indicating a nonreversible process most likely due to concomitant water splitting and formation of protons during the electrodeposition.