English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 60868/93650 (65%)
造訪人次 : 1147637      線上人數 : 19
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/113666


    題名: Filling the oxygen vacancies in Co3O4 with phosphorus: an ultra-efficient electrocatalyst for overall water splitting
    作者: Zhaohui Xiao;Yu Wang;Yu-Cheng Huang;Zengxi Wei;Chung-Li Dong;Jianmin Ma;Shaohua Shen;Yafei Li;Shuangyin Wang
    日期: 2017-10-17
    上傳時間: 2018-06-08 12:10:15 (UTC+8)
    出版者: Royal Society of Chemistry
    摘要: It is of essential importance to design an electrocatalyst with excellent performance for both hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) in water splitting. Co3O4 has been developed as a highly efficient OER electrocatalyst, but it has almost no activity for HER. In a previous study, it has been demonstrated that the formation of oxygen vacancies (VO) in Co3O4 can significantly enhance the OER activity. However, the stability of VO needs to be considered, especially under the highly oxidizing conditions of the OER process. It is a big challenge to stabilize the VO in Co3O4 while reserving the excellent activity. Filling the oxygen vacancies with heteroatoms in the VO-rich Co3O4 may be a smart strategy to stabilize the VO by compensating the coordination numbers and obtain an even surprising activity due to the modification of electronic properties by heteroatoms. Herein, we successfully transformed VO-rich Co3O4 into an HER-OER electrocatalyst by filling the in situ formed VO in Co3O4 with phosphorus (P-Co3O4) by treating Co3O4 with Ar plasma in the presence of a P precursor. The relatively lower coordination numbers in VO-Co3O4 than those in pristine Co3O4 were evidenced by X-ray adsorption spectroscopy, indicating that the oxygen vacancies were created after Ar plasma etching. On the other hand, the relatively higher coordination numbers in P-Co3O4 than those in VO-Co3O4 and nearly same coordination number as that in pristine Co3O4 strongly suggest the efficient filling of P in the vacancies by treatment with Ar plasma in the presence of a P precursor. The Co–O bonds in Co3O4 consist of octahedral Co3+(Oh)–O and tetrahedral Co2+(Td)–O (Oh, octahedral coordination by six oxygen atoms and Td, tetrahedral coordination by four oxygen atoms). More Co3+(Oh)–O are broken when oxygen vacancies are formed in VO-Co3O4, and more electrons enter the octahedral Co 3d orbital than those entering the tetrahedral Co 3d orbital. Then, with the filling of P in the vacancy site, electrons are transferred out of the Co 3d states, and more Co2+(Td) than Co3+(Oh) are left in P-Co3O4. These results suggest that the favored catalytic ability of P-Co3O4 is dominated by the Co2+(Td) site. P-Co3O4 shows superior electrocatalytic activities for HER and OER (among the best non-precious metal catalysts). Owing to its superior efficiency, P-Co3O4 can directly catalyze overall water splitting with excellent performance. The theoretical calculations illustrated that the improved electrical conductivity and intermediate binding by P-filling contributed significantly to the enhanced HER and OER activity of Co3O4
    關聯: Energy & Environmental Science 10(12), p.2563-2569
    DOI: 10.1039/C7EE01917C
    顯示於類別:[物理學系暨研究所] 期刊論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    Filling the oxygen vacancies in Co3O4 with phosphorus an ultra efficient electrocatalyst for the overall water splitting.pdf4753KbAdobe PDF1檢視/開啟
    index.html0KbHTML167檢視/開啟

    在機構典藏中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回饋