淡江大學機構典藏:Item 987654321/113428
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 64191/96979 (66%)
造访人次 : 8526771      在线人数 : 8007
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/113428


    题名: Continuous monitoring of pH level in flow aqueous system by using liquid crystal-based sensor device
    作者: Wei-Long Chen;Tsung Yang Ho;Jhih-Wei Huang;Chih-Hsin Chen
    关键词: Liquid crystal-based sensor;Reversible pH sensor;Continuous monitoring of pH in flow system;pH monitoring for drinking water;Naked-eye detection
    日期: 2018-06
    上传时间: 2018-05-18 12:10:21 (UTC+8)
    摘要: In this work, we report a liquid crystal (LC)-based sensor to determine pH level of aqueous solutions. This sensor was fabricated by filling the LCs doped with a pH-sensitive molecule into a cupper grid on a glass substrate. Theoretically, the dopants are neutral and disperse freely in the LCs. When the sensor was immersed in the aqueous solution, the increases of pH can lead to the dissociation of the dopants, allowing them to align at the LC/aqueous interface. This phenomenon causes the reorientation of the LC molecules and therefore a bright-to-dark transition of the LC image was observed simply through naked-eye. In our research, we found that the critical pH value for the optical transition of LC sensors can be adjusted from 6.8 to 8.2 through the selection of dopants, while it can be adjusted from 6.2 to 7.0 through the selection of dopant concentrations. By arranging four individual sensors in a device with inlet and out channels, we demonstrated that the pH level of an aqueous flow system can be determined by the number of bright LC sensors shown in the device. Based on this strategy, we developed a device to monitor the pH safety level for drinking water ranging from pH 6.5 to 8.5. This device demonstrated fast response (~1 s), good stability, reversibility and its capability to measure the pH change in tap water and pond water, which make it suitable for real-time and continuous monitoring the pH change in various flow aqueous systems.
    關聯: Microchemical Journal 139, p.339–346
    DOI: 10.1016/j.microc.2018.03.020
    显示于类别:[化學學系暨研究所] 期刊論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    index.html0KbHTML269检视/开启

    在機構典藏中所有的数据项都受到原著作权保护.

    TAIR相关文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回馈