English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 62637/95499 (66%)
造訪人次 : 3026387      線上人數 : 334
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/113422

    題名: A Robust Group Multiple Attributes Decision-Making Method Based on Risk Preference of the Decision Makers
    作者: Liang Yin;Huan-Jyh Shyur
    關鍵詞: decision support system;MADM;prospect theory;value function
    日期: 2018-02
    上傳時間: 2018-05-17 12:10:58 (UTC+8)
    摘要: In this paper, we propose a robust multiple attributes decision-making (MADM) method based on prospect theory to reflect the decision behavior of a decision maker in face of risk. Instead of identifying the reference points, the decision makers only need to determine the feasible ranges for each attribute by their knowledge and experience in the beginning of the decision process. The psychological value distances are defined to measure the overall prospect values of each alternative reference to extreme feasible solutions using the value function and the additive weighting method. In addition, a multiple attributes ranking index is developed to evaluate the preference ranking. This study further extends the method to a group decision environment. The preferences of more than one decision maker are internally aggregated into the decision procedure. Performance of the proposed algorithms is comparatively analyzed and sensitivity analysis is conducted. The results show that it is an appropriate and robust MADM method.
    關聯: International Journal of Applied Science and Engineering 15(1), p.33-46
    DOI: 10.6703%2fIJASE.201802_15(1).033
    顯示於類別:[資訊管理學系暨研究所] 期刊論文


    檔案 描述 大小格式瀏覽次數
    A Robust Group Multiple Attributes Decision-Making Method Based on Risk Preference of the Decision Makers.pdf381KbAdobe PDF2檢視/開啟



    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回饋