English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 55542/89862 (62%)
造訪人次 : 11006615      線上人數 : 37
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/113024

    題名: Effect of a low-molecular-weight compatibilizer on the immiscible blends of cellulose acetate propionate and poly(butylene terephthalate)
    作者: Nai-Yun Liang;Trong-Ming Don;Chih-Yuan Huang;Chia-Fen Lee;Wen-Yen Chiu
    關鍵詞: Cellulose acetate propionate (CAP);Poly(butylene terephthalate) (PBT);Compatibilizer Partially miscible;Nanofiber
    日期: 2018-04
    上傳時間: 2018-03-29 12:11:10 (UTC+8)
    出版者: Springer Netherlands
    摘要: Blends of poly(butylene terephthalate) (PBT) and cellulose acetate propionate (CAP) were found to be immiscible. In order to improve the interfacial strength and miscibility of the PBT/CAP blends, a low-molecular-weight poly(ethylene glycol) (PEG) was thus pre-mixed with the CAP to form the P-CAP mixture. It was then blended with the PBT up to 15 wt% using a twin-screw extruder to prepare the PBT/P-CAP blends, and subsequently processed into the films and fibers by compression-molding and melt-spinning, respectively. The thermal and dynamic mechanical analyses suggested that the PBT and CAP became partially miscible and the interfacial strength was thus improved in the PBT/P-CAP blends, owing to the addition of PEG. The PEG was not only miscible with the CAP but also with the PBT, and it served as a plasticizer as well as a compatibilizer. From the observation of the fractured surface of the PBT/P-CAP films, the PBT component was present as dispersed particles in the P-CAP matrix with size ranging from 1.4 to 3.0 μm; yet it became nanofiber in the spun fibers. Successful fibers of the PBT/P-CAP blends with an average diameter of 20 μm could be spun, where the tensile strength and elongation at break were in the range of 0.6−0.7 g/denier and 12−16%, respectively. Finally, the ultra-fine PBT nanofibers with diameters in the range of 50−70 nm were observed after removing the P-CAP matrix with acetone from the fibers, owing to the formation of PBT nanofibers during spinning and orientation processes. This method thus could successfully produce nano-scale PBT fibers with fineness comparable with the nanofibers developed via electrospinning technology.
    關聯: Journal of Polymer Research 25(4), p.25:88
    DOI: 10.1007/s10965-018-1487-5
    顯示於類別:[化學工程與材料工程學系暨研究所] 期刊論文


    檔案 描述 大小格式瀏覽次數



    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回饋