English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 58287/91819 (63%)
造访人次 : 13805726      在线人数 : 85
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻

    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/112681

    题名: Spatial Distribution of Taiwan Air Pollutant-An Application of Spatial Quantile Regression, The 28th International Biometric Conference
    作者: Chang, Y.-M
    关键词: air pollution;spatial temporal data;quantile regression;variable selection;Lasso
    日期: 2016-08-11
    上传时间: 2018-02-03 02:10:35 (UTC+8)
    摘要: Many literatures have pointed out that air pollutants increase morbidity risks of a number of diseases. It would affect the growth ofnational health expense . In this research, we are interested in estimating quantiles of air pollutants. The quantile is decomposed as a linear combination of basis functions. The quantile regression method is used to demonstrate the spatial distribution of air pollutants in different months. A subset selection method of Lasso is used to choose a suitable subset of the basis functions and estimate corresponding parameters. This method is computationally efficient for large data sets.
    關聯: 第十屆海峽兩岸統計與概率研討會
    显示于类别:[統計學系暨研究所] 會議論文





    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回馈