English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 58237/91808 (63%)
造訪人次 : 13787166      線上人數 : 36
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/112495

    題名: Actionable stock portfolio mining by using genetic algorithms
    作者: C. H. Chen;C. Y. Hsieh
    關鍵詞: data mining;domain-driven data mining;genetic algorithms;minimum transaction lots;stock portfolio optimization
    日期: 2016-11
    上傳時間: 2017-12-22 02:10:16 (UTC+8)
    出版者: Institute of Information Science
    摘要: Financial markets have many financial instruments and derivatives, including stocks, futures, and options. Investors thus have many choices when creating a portfolio. For stock portfolio selection, many approaches that focus on optimizing the weights of assets using evolutionary algorithms have been proposed. Since investors may have various requests, an approach that takes these requests into consideration is needed. Based on the domain-driven data mining concept, this paper proposes a domain-driven stock portfolio optimization approach that can satisfy an investor's requests for mining an actionable stock portfolio. A set of stocks are first encoded into a chromosome. Two real numbers that represent whether to buy a stock and the number of purchased units, respectively, are utilized to represent each stock. In the fitness evaluation, each chromosome is evaluated in terms of the investor's objective and subjective interestingness. Objective interestingness includes return on investment and value at risk. Subjective interestingness contains a portfolio penalty and an investment capital penalty, which reflect the satisfactions of the investor's requests. Experiments on real datasets are conducted to show the effectiveness of the proposed approach.
    關聯: Journal of Information Science and Engineering 32(6), p.1657-1678
    顯示於類別:[資訊工程學系暨研究所] 期刊論文


    檔案 描述 大小格式瀏覽次數
    Actionable stock portfolio mining by using genetic algorithms.pdf1693KbAdobe PDF4檢視/開啟



    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回饋