淡江大學機構典藏:Item 987654321/112493
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 64178/96951 (66%)
造访人次 : 9386038      在线人数 : 500
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/112493


    题名: Mining fuzzy temporal association rules by item lifespans
    作者: Chun-Hao Chena;Guo-Cheng Lanb;Tzung-Pei Hong;Shih-Bin Lind
    关键词: Fuzzy set;Fuzzy data mining;Fuzzy temporal association rule;Item lifespan
    日期: 2016-04
    上传时间: 2017-12-22 02:10:12 (UTC+8)
    出版者: Elsevier BV
    摘要: Data mining is the process of extracting desirable knowledge or interesting patterns from existing databases for specific purposes. In real-world applications, transactions may contain quantitative values and each item may have a lifespan from a temporal database. In this paper, we thus propose a data mining algorithm for deriving fuzzy temporal association rules. It first transforms each quantitative value into a fuzzy set using the given membership functions. Meanwhile, item lifespans are collected and recorded in a temporal information table through a transformation process. The algorithm then calculates the scalar cardinality of each linguistic term of each item. A mining process based on fuzzy counts and item lifespans is then performed to find fuzzy temporal association rules. Experiments are finally performed on two simulation datasets and the foodmart dataset to show the effectiveness and the efficiency of the proposed approach.
    關聯: Applied Soft Computing 41, pp.265–274
    DOI: 10.1016/j.asoc.2016.01.008
    显示于类别:[資訊工程學系暨研究所] 期刊論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    index.html0KbHTML139检视/开启
    Mining fuzzy temporal association rules by item lifespans.pdf2910KbAdobe PDF2检视/开启

    在機構典藏中所有的数据项都受到原著作权保护.

    TAIR相关文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回馈