English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 49378/84106 (59%)
造訪人次 : 7382371      線上人數 : 64
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/112436


    題名: Controlled Low-Frequency Electrical Noise of Monolayer MoS2 with Ohmic Contact and Tunable Carrier Concentration
    作者: Wang, Ji-Wun;Liu, Yen-Po;Chen, Po-Han;Chuang, Meng-Hsi;Pezeshki, Atiye;Ling, Dah-Chin;Chen, Jeng-Chung;Chen, Yung-Fu;Lee, Yi-Hsien
    關鍵詞: 2D material;1/f noise
    日期: 12/05/2017
    上傳時間: 2017-12-19 02:11:07 (UTC+8)
    出版者: Wiley
    摘要: Semiconducting monolayers of transition metal dichalcogenides (TMDs) are considered as emergent materials for nanodevices and optoelectronic applications. The low-frequency electrical noise of TMD-based devices is much higher than Si and other conventional semiconductors. The reduction of this noise along with control of the Ohmic contact and carrier concentration of the such devices remain major challenges. Here, the low-frequency (1/f) noise and transport properties of chemical-vapor-deposition-grown MoS2 are presented. The high mobility of 20–40 cm2 V−1 s−1 of the monolayer devices is highly reproducible. Reliable methods to induce Ohmic contact and to tune carrier density over a wide range of 1011–1014 cm−2 are presented to study the fundamental mechanism of the 1/f noise. The noise performance in the high carrier concentration regime is explored for the first time with Ohmic contact of the devices and ideal sample quality. A significant reduction of the noise figure of merit is achievable in the high-density regime. Polymer electrolyte encapsulation provides a practical method to effectively tune carrier density and engineer surface trap states of the monolayer TMDs, which would be helpful for practical applications of 2D atomic layers in nanoelectronics and photonics.
    關聯: Adv. Electron. Mater. 3, 1700340 (2017)
    DOI: DOI: 10.1002/aelm.201700340
    顯示於類別:[物理學系暨研究所] 期刊論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML7檢視/開啟

    在機構典藏中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回饋