English  |  正體中文  |  简体中文  |  Items with full text/Total items : 55221/89519 (62%)
Visitors : 10721298      Online Users : 21
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/112423


    Title: Variations of topside ionospheric electron density near the dawn terminator in relation to geomagnetic activity
    Authors: Sunny W.Y. Tam;Chien-Han Chen;Kaiti Wang
    Keywords: solar zenith angle;penetration electric fields;auroral electron precipitation;neutral wind;dawnside ionosphere
    Date: 2017-11-27
    Issue Date: 2017-12-19 02:10:33 (UTC+8)
    Publisher: EDP Sciences
    Abstract: A statistical study to determine the influence of geomagnetic disturbances on the ionosphere across the dawn terminator at subauroral and middle latitudes is performed, based on the vertical electron density profiles measured by the GPS Occultation Experiment aboard the FORMOSAT-3/COSMIC satellites from August 2006 to July 2009. Three ranges of solar zenith angles are adopted to characterize transitions between the pre- and post-dawn ionosphere. Results indicate opposing plasma density effects at the darkened and sunlit locations between 50° and 65° magnetic latitude (λm). The darkened topside ionosphere features density increases associated with geomagnetic activity, while density reductions mark its sunlit counterpart. The average electron peak density in the F2 region can increase by up to 44% in the darkened ionosphere and decrease by up to 20% in the sunlit ionosphere as Kp changes from 0–1 to 4–5. In the λm = 55°–65° range, the dominant contributors to the density perturbation are auroral electron precipitation for the darkened region and enhanced penetration electric fields for the sunlit region, with the transition occurring across the terminator local times. Dominance shifts first to electric fields at 50°–55°, then to aurora-induced neutral wind at 45°–50°, suggesting that during disturbed times electric fields seldom penetrate below λm = 50°. Findings presented in this statistical study should contribute to the study of space weather and the understanding of non-local influences of geomagnetic disturbances on topside dynamics.
    Relation: Journal of Space Weather and Space Climate, 7, A31, pp.1-20
    DOI: 10.1051/swsc/2017030
    Appears in Collections:[Graduate Institute & Department of Aerospace Engineering] Journal Article

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML121View/Open
    Variations of topside ionospheric electron density near the dawn.pdf3155KbAdobe PDF27View/Open

    All items in 機構典藏 are protected by copyright, with all rights reserved.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - Feedback