English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 62379/95055 (66%)
造访人次 : 2297012      在线人数 : 157
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻

    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/112407

    题名: Treatment of Palm Oil Mill Effluent Using Combination System of Microbial Fuel Cell and Anaerobic Membrane Bioreactor
    作者: Sze Pin Tan;Hong Feng Kong;Mohammed J. K. Bashir;Po Kim Lo;Chii-Dong Ho;Choon Aun Ng
    关键词: Anaerobic membrane bioreactor, Microbial fuel cell, Operational temperature
    日期: 2017-12
    上传时间: 2017-12-13 02:11:20 (UTC+8)
    摘要: It was found that the operational temperature and the incorporation of microbial fuel cell (MFC) into anaerobic membrane bioreactor (AnMBR) have significant effect on AnMBRs’ filtration performance. This paper addresses two issues (i) effect of temperature on AnMBR; and (ii) effect of MFC on AnMBRs’ performance. The highest COD removal efficiency was observed in mesophilic condition (45 °C). It was observed that the bioreactors operated at
    45 °C had the highest filtration resistance compared to others, albeit the excellent performance in removing the organic pollutant. Next, MFC was combined with AnMBR where the MFC acted as a pre-treatment unit prior to AnMBR and it was fed directly with palm oil mill effluent (POME). The supernatant from MFC was further treated by AnMBR. Noticeable improvement in filtration performance was observed in the combined system. Decrease in polysaccharide amount was observed in combined system which in turn suggested that the better filtration performance.
    關聯: Bioresource Technology 245(A), p.916-924
    显示于类别:[化學工程與材料工程學系暨研究所] 期刊論文


    档案 大小格式浏览次数



    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回馈