淡江大學機構典藏:Item 987654321/112323
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 62830/95882 (66%)
Visitors : 4036846      Online Users : 603
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/112323


    Title: Simulation of the interaction of shock wave hitting bubbles and droplets
    Authors: Niu, Yang-Yao;Chen, Yu-Chieh
    Keywords: Multi-component flow, AUSMD, shock, bubble, droplet, sharp intrerface.
    Date: 2017-10-19
    Issue Date: 2017-12-06 02:11:34 (UTC+8)
    Abstract: In this study, we have implemented the sharp interface algorithm with the existing schemes, i.e. A robust MUSCL type AUSMD and THINC schemes which employs a approximated Riemann solver along with the Tangent of Hyperbola for Interface Capturing (THINC) technique to reconstruct the solution function for both smooth profile and discontinuity. The basic idea is to reconstruct the solution functions so that the jumps at cell boundaries are minimized, which effectively reduces the numerical dissipation in the resulting schemes. The THINC reconstruction automatically realizes the highest possible polynomial interpolation for smooth profile, whilst prefers other forms of reconstructions in the presence of discontinuities. The concept is a general platform of more profound impact can be used with other candidate reconstructions to further explore high-fidelity schemes for capturing both smooth and discontinuous solutions. Here, to consider the multi-component flow equations, the mixture model is regarded as a model equation. The transport equation for each volume fraction is expressed in quasi-conservative form. Numerical model is not only demonstrated to maintain pressure equilibrium over contact discontinuities using conservative pressure update, but also AUSMD are shown to enhance pressure being continuous across the contact discontinuity by means of a blend function of the ratio of pressure to density As shown in Excellent preliminary numerical results have been obtained for the Euler conservation laws, which the 2-D shock-cylinder interaction problem involves shock waves, material interfaces and their interaction.
    Relation: Third Computational Mechanics Conference in Taiwan
    Appears in Collections:[Graduate Institute & Department of Aerospace Engineering] Proceeding

    Files in This Item:

    There are no files associated with this item.

    All items in 機構典藏 are protected by copyright, with all rights reserved.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - Feedback