English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 56431/90260 (63%)
造访人次 : 11695524      在线人数 : 47
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/112123


    题名: Application of Finite State Wake Dynamics on Wind Turbine Blade
    作者: Wang, Yi-Ren;Tang, Chi;Chiu, Chien-Chih
    关键词: Blade Element Theory;Peters Dynamics Wake Theory;Fluid-Structure Interaction;Trailing Edge Flap (TEF)
    日期: 2017-09-07
    上传时间: 2017-11-15 02:11:15 (UTC+8)
    摘要: Wind power devices are now used to produce electricity, and commonly termed wind turbines. Load and performance calculations of wind turbines are usually performed by the Blade-Element/Momentum (BEM) method. However, the wake effects and the wake-blade structure interactions are less considered in most wind turbine analysis. This research studied a dynamic wake and blade interacted wind turbine. The finite state dynamic wake theory was applied. The effects of the wake and the configuration of the modern trailing-edge-flap (TEF) on the wind turbine blade were analyzed. The lift and the stress distribution on the blade were performed by using semi-analytic and numerical wake theory (The finite state wake theory) and the combination with APDL (ANSYS Parametric Design Language) and FORTRAN code. The effects of TEFs, considering their span-wise lengths and index angles on wind turbine blades, were fully discussed. The thrusts and root stresses on the wind turbine blade were also presented. Results show that with identical shape and material of blades, installing TEF could increase the lift (thrust), while no significant rise in stress are produced at the root section of the blade.
    關聯: CNKI
    显示于类别:[航空太空工程學系暨研究所] 會議論文

    文件中的档案:

    没有与此文件相关的档案.

    在機構典藏中所有的数据项都受到原著作权保护.

    TAIR相关文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回馈