English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 49378/84106 (59%)
造訪人次 : 7364750      線上人數 : 58
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/112026


    題名: Application of the Clifford algebra valued boundary integral equations with Cauchy-type kernels to some engineering problems
    克氏代數值之邊界積分方程搭配柯西型核函數的一些工程應用
    作者: 李家瑋
    Lee, Jia-Wei
    貢獻者: 淡江大學土木系
    洪宏基;Hong, Hong-Ki;陳正宗;Chen, Jeng-Tzong
    關鍵詞: complex variable boundary integral equation;Clifford algebra;Clifford algebra valued boundary integral equation;Cauchy-type kernels
    複變數邊界積分方程;克氏代數;克氏代數值邊界積分方程;柯西型核函數
    日期: 2016-01
    上傳時間: 2017-11-09 11:08:47 (UTC+8)
    摘要: The conventional complex variable boundary integral equation (CVBIE) based
    on the conventional Cauchy integral formula is powerful and suitable to solve
    two-dimensional problems. In particular, the unknown function is a complex-valued
    holomorphic function. In other words, the unknown function satisfies the
    Cauchy-Riemann equations. However, the most part of practical engineering
    problems are three-dimensional problems and do not necessarily satisfies
    Cauchy-Riemann equations. Therefore, there are two targets in this dissertation. One
    is to extend the conventional CVBIE to solve two-dimensional problems for which
    the unknown function is not a complex-valued holomorphic function. The other is to
    extend to three-dimensions and derive an extended BIE still preserving some
    properties of complex variables in the three-dimensional state. For the extension of
    the conventional CVBIE, we employ the Borel-Pompeiu formula to derive the
    generalized CVBIE. In this way, the torsion problems can be solved in the state of
    two shear stress fields directly. In addition, the torsional rigidity can also be
    determined simultaneously. Since the theory of complex variables has a limitation
    that is only suitable for 2-dimensional problems, we introduce Clifford algebra and
    Clifford analysis to replace complex variables to deal with 3-dimensional problems.
    Clifford algebra can be seen as an extension of complex or quaternionic algebras.
    Clifford analysis is also known as hypercomplex analysis. We apply the Clifford
    algebra valued Stokes' theorem to derive Clifford algebra valued BIEs with
    Cauchy-type kernels. In this way, some three-dimensional problem with multiple
    unknown fields may be solved straightforward. Finally, several electromagnetic
    scattering problems are considered to check the validity of the derived Clifford
    algebra valued BIEs.

    基於傳統柯西(Cauchy)積分公式的傳統複變數邊界積分方程求解二維問題
    是非常合適且強而有力,尤其當未知函數是一個複數值的全純函數。換句話說,
    此未知函數需滿足柯西-黎曼(Cauchy-Riemann)方程式。然而大部分的實際工程
    問題是三維問題且不一定滿足柯西-黎曼方程式,因此本論文有兩個目標,其中
    一個是延伸傳統複變數邊界積分方程求解未知函數為非複數值全純函數的二維
    問題。另一個則是推導出即使在三維空間仍保有一些複變數特性的廣義邊界積
    分方程。對於延伸傳統複變數邊界積分方程,本文使用 Borel-Pompeiu 公式來
    導得廣義複變數邊界積分方程,以這種方式扭轉問題能以兩個剪應力場為狀態
    函數來直接求解,此外扭轉剛度也可一併求得。由於複變函數受限於僅適用於
    二維的問題,本文引入克氏(Clifford)代數與克氏(Clifford)分析來取代複變數處
    理三維問題,克氏代數可以看成複變數或者是四元數的延伸,且克氏分析也可
    稱之為超複變分析。本文利用了克氏代數值的斯托克斯(Stokes)定理推導出含柯
    西(Cauchy)型核函數的克氏代數值邊界積分方程,如此一來,一些含多個未知
    場量的三維問題可以直接被求解。最後本文則考慮一些電磁波散射問題來檢驗
    克氏代數值邊界積分方程的正確性。
    顯示於類別:[土木工程學系暨研究所] 學位論文

    文件中的檔案:

    沒有與此文件相關的檔案.

    在機構典藏中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回饋