English  |  正體中文  |  简体中文  |  Items with full text/Total items : 58791/92483 (64%)
Visitors : 626318      Online Users : 49
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/112025

    Title: Resource-Constrained Decision Tree Induction
    Authors: 吳家齊
    Wu, Chia-Chi
    Contributors: 淡江大學管科系
    Keywords: data mining;cost-sensitive learning;decision tree;classification
    Date: 2010-07
    Issue Date: 2017-11-09 10:52:46 (UTC+8)
    Abstract: Classification is one of the most important research domains in data mining. Among the existing classifiers, decision trees are probably the most popular and commonly-used classification models. Most of the decision tree algorithms aimed to maximize the classification accuracy and minimize the classification error. However, in many real-world applications, there are various types of cost or resource consumption involved in both the induction of decision tree and the classification of future instance. Furthermore, the problem we face may require us to complete a classification task with limited resource. Therefore, how to build an optimum decision tree with resource constraint becomes an important issue. In this study, we first propose two algorithms which are improved versions of traditional TDIDT(Top-Down Induction on Decision Trees) algorithms. Then, we adopt a brand new approach to deal with multiple resource constraints. This approach extracts association classification rules from training dataset first, and then builds a decision tree from the extracted rules. Empirical evaluations were carried out using real datasets, and the results indicated that the proposed methods can achieve satisfactory results in handling data under different resource constraints.

    分類是資料探勘中一個非常重要的研究領域。在現存的許多分類器當中,決策樹可能是最受歡迎、也最常被使用的分類模型。現有的大多數決策樹演算法皆致力於將分類精確度最大化、將分類錯誤率最小化。然而,在許多現實生活應用中,從以現有資料建立決策樹,到用決策樹分類未來資料的每個過程,都可能包含了各式各樣不同種類的成本或資源消耗。依據我們所面對的問題,我們也有可能需要在有限的資源底下完成分類工作。因此,如何在資源有限下建立出最適用的決策樹是一個很重要的議題。在本研究中,我們首先提出了兩個改良自傳統TDIDT﹝Top-Down Induction on Decision Trees, 由上而下的決策樹建構﹞的演算法。接著,我們採用了一個全新的方法來處理多種資源限制的問題。我們所提出的新方法先從訓練資料集中粹取出所有合法的分類規則,再利用這些粹取出的規則建出一棵決策樹。我們使用實際資料來進行完整的實驗評估。實驗結果顯示,我們提出的方法在不同資源限制下的表現都是令人滿意的。
    Appears in Collections:[Department of Management Sciences] Thesis

    Files in This Item:

    There are no files associated with this item.

    All items in 機構典藏 are protected by copyright, with all rights reserved.

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - Feedback