English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 60696/93562 (65%)
造访人次 : 1054091      在线人数 : 32
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/111863


    题名: Computationally efficient algorithm for vision-based simultaneous localization and mapping of mobile robots
    作者: Chen-Chien Hsu, Cheng-Kai Yang, Yi-Hsing Chien, Yin-Tien Wang, Wei-Yen Wang, Chiang-Heng Chien
    关键词: SLAM;FastSLAM;Simultaneous localization and mapping;SURF;Visual SLAM
    日期: 2017-06-12
    上传时间: 2017-10-27 02:10:50 (UTC+8)
    摘要: Purpose
    FastSLAM is a popular method to solve the problem of simultaneous localization and mapping (SLAM). However, when the number of landmarks present in real environments increases, there are excessive comparisons of the measurement with all the existing landmarks in each particle. As a result, the execution speed will be too slow to achieve the objective of real-time navigation. Thus, this paper aims to improve the computational efficiency and estimation accuracy of conventional SLAM algorithms.

    Design/methodology/approach
    As an attempt to solve this problem, this paper presents a computationally efficient SLAM (CESLAM) algorithm, where odometer information is considered for updating the robot’s pose in particles. When a measurement has a maximum likelihood with the known landmark in the particle, the particle state is updated before updating the landmark estimates.

    Findings
    Simulation results show that the proposed CESLAM can overcome the problem of heavy computational burden while improving the accuracy of localization and mapping building. To practically evaluate the performance of the proposed method, a Pioneer 3-DX robot with a Kinect sensor is used to develop an RGB-D-based computationally efficient visual SLAM (CEVSLAM) based on Speeded-Up Robust Features (SURF). Experimental results confirm that the proposed CEVSLAM system is capable of successfully estimating the robot pose and building the map with satisfactory accuracy.

    Originality/value
    The proposed CESLAM algorithm overcomes the problem of the time-consuming process because of unnecessary comparisons in existing FastSLAM algorithms. Simulations show that accuracy of robot pose and landmark estimation is greatly improved by the CESLAM. Combining CESLAM and SURF, the authors establish a CEVSLAM to significantly improve the estimation accuracy and computational efficiency. Practical experiments by using a Kinect visual sensor show that the variance and average error by using the proposed CEVSLAM are smaller than those by using the other visual SLAM algorithms.
    關聯: Engineering Computations, Vol. 34 No. 4, pp. 1217-1239
    DOI: 10.1108/EC-05-2015-0123
    显示于类别:[機械與機電工程學系暨研究所] 期刊論文

    文件中的档案:

    档案 大小格式浏览次数
    index.html0KbHTML1检视/开启

    在機構典藏中所有的数据项都受到原著作权保护.

    TAIR相关文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回馈